MolCRAFT / core /utils /train.py
Atomu2014's picture
demo init commit
1f0c7b9
import copy
import warnings
import numpy as np
import torch
from torch_geometric.data import Data, Batch
from core.utils.warmup import GradualWarmupScheduler
# customize exp lr scheduler with min lr
class ExponentialLR_with_minLr(torch.optim.lr_scheduler.ExponentialLR):
def __init__(self, optimizer, gamma, min_lr=1e-4, last_epoch=-1, verbose=False):
self.gamma = gamma
self.min_lr = min_lr
super(ExponentialLR_with_minLr, self).__init__(optimizer, gamma, last_epoch, verbose)
def get_lr(self):
if not self._get_lr_called_within_step:
warnings.warn("To get the last learning rate computed by the scheduler, "
"please use `get_last_lr()`.", UserWarning)
if self.last_epoch == 0:
return self.base_lrs
return [max(group['lr'] * self.gamma, self.min_lr)
for group in self.optimizer.param_groups]
def _get_closed_form_lr(self):
return [max(base_lr * self.gamma ** self.last_epoch, self.min_lr)
for base_lr in self.base_lrs]
def repeat_data(data: Data, num_repeat) -> Batch:
datas = [copy.deepcopy(data) for i in range(num_repeat)]
return Batch.from_data_list(datas)
def repeat_batch(batch: Batch, num_repeat) -> Batch:
datas = batch.to_data_list()
new_data = []
for i in range(num_repeat):
new_data += copy.deepcopy(datas)
return Batch.from_data_list(new_data)
def inf_iterator(iterable):
iterator = iterable.__iter__()
while True:
try:
yield iterator.__next__()
except StopIteration:
iterator = iterable.__iter__()
def get_optimizer(cfg, model):
if cfg.type == 'adam':
return torch.optim.Adam(
model.parameters(),
lr=cfg.lr,
weight_decay=cfg.weight_decay,
betas=(cfg.beta1, cfg.beta2,)
)
else:
raise NotImplementedError('Optimizer not supported: %s' % cfg.type)
def get_scheduler(train_cfg, optimizer):
cfg = train_cfg.scheduler
if cfg.type == 'cosine':
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(
optimizer,
T_max=cfg.max_iters,
eta_min=cfg.min_lr,
)
def get_last_lr():
return scheduler.get_last_lr()[0]
return {
'scheduler': scheduler,
'interval': 'step',
}, get_last_lr
elif cfg.type == 'plateau':
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
factor=cfg.factor,
patience=cfg.patience,
min_lr=cfg.min_lr
)
def get_last_lr():
return optimizer.param_groups[0]['lr']
return {
'scheduler': scheduler,
'monitor': 'val/recon_loss',
'interval': 'step',
'frequency': train_cfg.val_freq,
}, get_last_lr
# elif cfg.type == 'warmup_plateau':
# return GradualWarmupScheduler(
# optimizer,
# multiplier=cfg.multiplier,
# total_epoch=cfg.total_epoch,
# after_scheduler=torch.optim.lr_scheduler.ReduceLROnPlateau(
# optimizer,
# factor=cfg.factor,
# patience=cfg.patience,
# min_lr=cfg.min_lr
# )
# )
# elif cfg.type == 'expmin':
# return ExponentialLR_with_minLr(
# optimizer,
# gamma=cfg.factor,
# min_lr=cfg.min_lr,
# )
# elif cfg.type == 'expmin_milestone':
# gamma = np.exp(np.log(cfg.factor) / cfg.milestone)
# return ExponentialLR_with_minLr(
# optimizer,
# gamma=gamma,
# min_lr=cfg.min_lr,
# )
else:
raise NotImplementedError('Scheduler not supported: %s' % cfg.type)