import torch import torch.nn as nn import torch.nn.functional as F from torch_geometric.nn import knn_graph class GaussianSmearing(nn.Module): def __init__(self, start=0.0, stop=5.0, num_gaussians=50, fixed_offset=True): super(GaussianSmearing, self).__init__() self.start = start self.stop = stop self.num_gaussians = num_gaussians if fixed_offset: # customized offset offset = torch.tensor([0, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.5, 4, 4.5, 5, 5.5, 6, 7, 8, 9, 10]) else: offset = torch.linspace(start, stop, num_gaussians) self.coeff = -0.5 / (offset[1] - offset[0]).item() ** 2 self.register_buffer('offset', offset) def __repr__(self): return f'GaussianSmearing(start={self.start}, stop={self.stop}, num_gaussians={self.num_gaussians})' def forward(self, dist): dist = dist.view(-1, 1) - self.offset.view(1, -1) return torch.exp(self.coeff * torch.pow(dist, 2)) class AngleExpansion(nn.Module): def __init__(self, start=1.0, stop=5.0, half_expansion=10): super(AngleExpansion, self).__init__() l_mul = 1. / torch.linspace(stop, start, half_expansion) r_mul = torch.linspace(start, stop, half_expansion) coeff = torch.cat([l_mul, r_mul], dim=-1) self.register_buffer('coeff', coeff) def forward(self, angle): return torch.cos(angle.view(-1, 1) * self.coeff.view(1, -1)) class Swish(nn.Module): def __init__(self): super(Swish, self).__init__() self.beta = nn.Parameter(torch.tensor(1.0)) def forward(self, x): return x * torch.sigmoid(self.beta * x) NONLINEARITIES = { "tanh": nn.Tanh(), "relu": nn.ReLU(), "softplus": nn.Softplus(), "elu": nn.ELU(), "swish": Swish(), 'silu': nn.SiLU() } class MLP(nn.Module): """MLP with the same hidden dim across all layers.""" def __init__(self, in_dim, out_dim, hidden_dim, num_layer=2, norm=True, act_fn='relu', act_last=False): super().__init__() layers = [] for layer_idx in range(num_layer): if layer_idx == 0: layers.append(nn.Linear(in_dim, hidden_dim)) elif layer_idx == num_layer - 1: layers.append(nn.Linear(hidden_dim, out_dim)) else: layers.append(nn.Linear(hidden_dim, hidden_dim)) if layer_idx < num_layer - 1 or act_last: if norm: layers.append(nn.LayerNorm(hidden_dim)) layers.append(NONLINEARITIES[act_fn]) self.net = nn.Sequential(*layers) def forward(self, x): return self.net(x) def outer_product(*vectors): for index, vector in enumerate(vectors): if index == 0: out = vector.unsqueeze(-1) else: out = out * vector.unsqueeze(1) out = out.view(out.shape[0], -1).unsqueeze(-1) return out.squeeze() def get_h_dist(dist_metric, hi, hj): if dist_metric == 'euclidean': h_dist = torch.sum((hi - hj) ** 2, -1, keepdim=True) return h_dist elif dist_metric == 'cos_sim': hi_norm = torch.norm(hi, p=2, dim=-1, keepdim=True) hj_norm = torch.norm(hj, p=2, dim=-1, keepdim=True) h_dist = torch.sum(hi * hj, -1, keepdim=True) / (hi_norm * hj_norm) return h_dist, hj_norm def get_r_feat(r, r_exp_func, node_type=None, edge_index=None, mode='basic'): if mode == 'origin': r_feat = r elif mode == 'basic': r_feat = r_exp_func(r) elif mode == 'sparse': src, dst = edge_index nt_src = node_type[src] # [n_edges, 8] nt_dst = node_type[dst] r_exp = r_exp_func(r) r_feat = outer_product(nt_src, nt_dst, r_exp) else: raise ValueError(mode) return r_feat def compose_context(h_protein, h_ligand, pos_protein, pos_ligand, batch_protein, batch_ligand): # previous version has problems when ligand atom types are fixed # (due to sorting randomly in case of same element) # TODO: check if this runs on cpu batch_ctx = torch.cat([batch_protein, batch_ligand], dim=0) # sort_idx = batch_ctx.argsort() sort_idx = torch.sort(batch_ctx, stable=True).indices mask_ligand = torch.cat([ torch.zeros([batch_protein.size(0)], device=batch_protein.device).bool(), torch.ones([batch_ligand.size(0)], device=batch_ligand.device).bool(), ], dim=0)[sort_idx] batch_ctx = batch_ctx[sort_idx] h_ctx = torch.cat([h_protein, h_ligand], dim=0)[sort_idx] # (N_protein+N_ligand, H) pos_ctx = torch.cat([pos_protein, pos_ligand], dim=0)[sort_idx] # (N_protein+N_ligand, 3) return h_ctx, pos_ctx, batch_ctx, mask_ligand def compose_context_prop(h_protein, h_ligand, pos_protein, pos_ligand, batch_protein, batch_ligand): batch_ctx = torch.cat([batch_protein, batch_ligand], dim=0) sort_idx = batch_ctx.argsort() mask_protein = torch.cat([ torch.ones([batch_protein.size(0)], device=batch_protein.device).bool(), torch.zeros([batch_ligand.size(0)], device=batch_ligand.device).bool(), ], dim=0)[sort_idx] batch_ctx = batch_ctx[sort_idx] h_ctx = torch.cat([h_protein, h_ligand], dim=0)[sort_idx] # (N_protein+N_ligand, H) pos_ctx = torch.cat([pos_protein, pos_ligand], dim=0)[sort_idx] # (N_protein+N_ligand, 3) return h_ctx, pos_ctx, batch_ctx class ShiftedSoftplus(nn.Module): def __init__(self): super().__init__() self.shift = torch.log(torch.tensor(2.0)).item() def forward(self, x): return F.softplus(x) - self.shift def hybrid_edge_connection(ligand_pos, protein_pos, k, ligand_index, protein_index): # fully-connected for ligand atoms dst = torch.repeat_interleave(ligand_index, len(ligand_index)) src = ligand_index.repeat(len(ligand_index)) mask = dst != src dst, src = dst[mask], src[mask] ll_edge_index = torch.stack([src, dst]) # knn for ligand-protein edges ligand_protein_pos_dist = torch.unsqueeze(ligand_pos, 1) - torch.unsqueeze(protein_pos, 0) ligand_protein_pos_dist = torch.norm(ligand_protein_pos_dist, p=2, dim=-1) knn_p_idx = torch.topk(ligand_protein_pos_dist, k=k, largest=False, dim=1).indices knn_p_idx = protein_index[knn_p_idx] knn_l_idx = torch.unsqueeze(ligand_index, 1) knn_l_idx = knn_l_idx.repeat(1, k) pl_edge_index = torch.stack([knn_p_idx, knn_l_idx], dim=0) pl_edge_index = pl_edge_index.view(2, -1) return ll_edge_index, pl_edge_index def batch_hybrid_edge_connection(x, k, mask_ligand, batch, add_p_index=False): batch_size = batch.max().item() + 1 batch_ll_edge_index, batch_pl_edge_index, batch_p_edge_index = [], [], [] with torch.no_grad(): for i in range(batch_size): ligand_index = ((batch == i) & (mask_ligand == 1)).nonzero()[:, 0] protein_index = ((batch == i) & (mask_ligand == 0)).nonzero()[:, 0] ligand_pos, protein_pos = x[ligand_index], x[protein_index] ll_edge_index, pl_edge_index = hybrid_edge_connection( ligand_pos, protein_pos, k, ligand_index, protein_index) batch_ll_edge_index.append(ll_edge_index) batch_pl_edge_index.append(pl_edge_index) if add_p_index: all_pos = torch.cat([protein_pos, ligand_pos], 0) p_edge_index = knn_graph(all_pos, k=k, flow='source_to_target') p_edge_index = p_edge_index[:, p_edge_index[1] < len(protein_pos)] p_src, p_dst = p_edge_index all_index = torch.cat([protein_index, ligand_index], 0) p_edge_index = torch.stack([all_index[p_src], all_index[p_dst]], 0) batch_p_edge_index.append(p_edge_index) if add_p_index: edge_index = [torch.cat([ll, pl, p], -1) for ll, pl, p in zip( batch_ll_edge_index, batch_pl_edge_index, batch_p_edge_index)] else: edge_index = [torch.cat([ll, pl], -1) for ll, pl in zip(batch_ll_edge_index, batch_pl_edge_index)] edge_index = torch.cat(edge_index, -1) return edge_index