Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,25 +1,22 @@
|
|
| 1 |
-
from fastapi import FastAPI
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
|
|
|
| 4 |
|
| 5 |
-
PRIMARY_MODEL = "cardiffnlp/twitter-roberta-base-sentiment"
|
| 6 |
-
FALLBACK_MODEL = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 7 |
|
| 8 |
app = FastAPI()
|
| 9 |
clf = None
|
| 10 |
loaded_model_id = None
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
return {"status": "ok", "model": loaded_model_id}
|
| 15 |
|
| 16 |
@app.get("/healthz")
|
| 17 |
def health():
|
| 18 |
return {"status": "healthy", "model": loaded_model_id}
|
| 19 |
|
| 20 |
-
class Payload(BaseModel):
|
| 21 |
-
sentences: list[str]
|
| 22 |
-
|
| 23 |
def load_pipeline():
|
| 24 |
global clf, loaded_model_id
|
| 25 |
if clf is not None:
|
|
@@ -34,70 +31,76 @@ def load_pipeline():
|
|
| 34 |
print(f"Failed to load {model_id}: {e}")
|
| 35 |
raise RuntimeError("No sentiment model could be loaded")
|
| 36 |
|
| 37 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
m = {s["label"].lower(): float(s["score"]) for s in scores}
|
| 39 |
keys = set(m.keys())
|
| 40 |
|
| 41 |
neg = neu = pos = 0.0
|
| 42 |
detected_binary = False
|
| 43 |
|
| 44 |
-
if {"negative",
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
pos = m.get("positive", 0.0)
|
| 48 |
-
neu = m.get("neutral", 0.0)
|
| 49 |
detected_binary = ("neutral" not in m) or (len(m) == 2)
|
| 50 |
elif any(k.startswith("label_") for k in keys):
|
| 51 |
neg = m.get("label_0", 0.0)
|
| 52 |
if "label_2" in m or len(m) >= 3:
|
| 53 |
-
neu = m.get("label_1", 0.0)
|
| 54 |
-
pos = m.get("label_2", 0.0)
|
| 55 |
-
detected_binary = False
|
| 56 |
else:
|
| 57 |
-
pos = m.get("label_1", 0.0)
|
| 58 |
-
neu = 0.0
|
| 59 |
-
detected_binary = True
|
| 60 |
else:
|
| 61 |
-
for k,
|
| 62 |
if "pos" in k: pos = v
|
| 63 |
if "neg" in k: neg = v
|
| 64 |
if "neu" in k: neu = v
|
| 65 |
detected_binary = (neu == 0.0)
|
| 66 |
|
| 67 |
-
is_binary = detected_binary if
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
else:
|
| 80 |
-
denom = max(1e-6, 1.0 - neu)
|
| 81 |
-
score = (pos - neg) / denom
|
| 82 |
-
score = max(-1.0, min(1.0, score))
|
| 83 |
-
conf = max(pos, neg, neu)
|
| 84 |
-
label = "positive" if pos >= max(neg, neu) else ("negative" if neg >= max(pos, neu) else "neutral")
|
| 85 |
-
if conf < 0.55:
|
| 86 |
-
label = "neutral"
|
| 87 |
-
return {
|
| 88 |
-
"label": label,
|
| 89 |
-
"score": score,
|
| 90 |
-
"confidence": conf,
|
| 91 |
-
"scores": {"positive": pos, "neutral": neu, "negative": neg},
|
| 92 |
-
}
|
| 93 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
@app.post("/predict")
|
| 96 |
-
def predict(
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
return {"model": loaded_model_id, "results": results}
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Query
|
| 2 |
from pydantic import BaseModel
|
| 3 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification, pipeline
|
| 4 |
+
import math
|
| 5 |
|
| 6 |
+
PRIMARY_MODEL = "cardiffnlp/twitter-roberta-base-sentiment"
|
| 7 |
+
FALLBACK_MODEL = "distilbert-base-uncased-finetuned-sst-2-english"
|
| 8 |
|
| 9 |
app = FastAPI()
|
| 10 |
clf = None
|
| 11 |
loaded_model_id = None
|
| 12 |
|
| 13 |
+
class Payload(BaseModel):
|
| 14 |
+
sentences: list[str]
|
|
|
|
| 15 |
|
| 16 |
@app.get("/healthz")
|
| 17 |
def health():
|
| 18 |
return {"status": "healthy", "model": loaded_model_id}
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
def load_pipeline():
|
| 21 |
global clf, loaded_model_id
|
| 22 |
if clf is not None:
|
|
|
|
| 31 |
print(f"Failed to load {model_id}: {e}")
|
| 32 |
raise RuntimeError("No sentiment model could be loaded")
|
| 33 |
|
| 34 |
+
def compute_score(pos: float, neg: float, neu: float, mode: str) -> float:
|
| 35 |
+
if mode == "debias": # original
|
| 36 |
+
denom = max(1e-6, 1.0 - neu)
|
| 37 |
+
return (pos - neg) / denom
|
| 38 |
+
elif mode == "raw": # conservative
|
| 39 |
+
return pos - neg
|
| 40 |
+
elif mode == "logit": # optional slightly squashed
|
| 41 |
+
# difference of logits, then tanh to clamp to [-1,1]
|
| 42 |
+
lp = math.log(max(1e-9, pos)) - math.log(max(1e-9, 1-pos))
|
| 43 |
+
ln = math.log(max(1e-9, neg)) - math.log(max(1e-9, 1-neg))
|
| 44 |
+
return math.tanh((lp - ln) / 4.0)
|
| 45 |
+
else:
|
| 46 |
+
return pos - neg
|
| 47 |
+
|
| 48 |
+
def scores_to_label(scores, mode: str, binary_hint: bool | None, min_conf: float, neutral_zone: float):
|
| 49 |
m = {s["label"].lower(): float(s["score"]) for s in scores}
|
| 50 |
keys = set(m.keys())
|
| 51 |
|
| 52 |
neg = neu = pos = 0.0
|
| 53 |
detected_binary = False
|
| 54 |
|
| 55 |
+
if {"negative","positive"} & keys:
|
| 56 |
+
neg, pos = m.get("negative",0.0), m.get("positive",0.0)
|
| 57 |
+
neu = m.get("neutral",0.0)
|
|
|
|
|
|
|
| 58 |
detected_binary = ("neutral" not in m) or (len(m) == 2)
|
| 59 |
elif any(k.startswith("label_") for k in keys):
|
| 60 |
neg = m.get("label_0", 0.0)
|
| 61 |
if "label_2" in m or len(m) >= 3:
|
| 62 |
+
neu = m.get("label_1", 0.0); pos = m.get("label_2", 0.0); detected_binary = False
|
|
|
|
|
|
|
| 63 |
else:
|
| 64 |
+
pos = m.get("label_1", 0.0); neu = 0.0; detected_binary = True
|
|
|
|
|
|
|
| 65 |
else:
|
| 66 |
+
for k,v in m.items():
|
| 67 |
if "pos" in k: pos = v
|
| 68 |
if "neg" in k: neg = v
|
| 69 |
if "neu" in k: neu = v
|
| 70 |
detected_binary = (neu == 0.0)
|
| 71 |
|
| 72 |
+
is_binary = detected_binary if binary_hint is None else bool(binary_hint)
|
| 73 |
+
if is_binary:
|
| 74 |
+
neu = 0.0
|
| 75 |
|
| 76 |
+
score = compute_score(pos, neg, neu, mode)
|
| 77 |
+
# clamp to [-1,1]
|
| 78 |
+
score = max(-1.0, min(1.0, score))
|
| 79 |
+
|
| 80 |
+
conf = max(pos, neg, neu)
|
| 81 |
+
label = "positive" if score > 0 else ("negative" if score < 0 else "neutral")
|
| 82 |
+
|
| 83 |
+
# Optional gating
|
| 84 |
+
if conf < min_conf or abs(score) < neutral_zone:
|
| 85 |
+
label = "neutral"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
return {
|
| 88 |
+
"label": label,
|
| 89 |
+
"score": score,
|
| 90 |
+
"confidence": conf,
|
| 91 |
+
"scores": {"positive": pos, "neutral": neu, "negative": neg},
|
| 92 |
+
}
|
| 93 |
|
| 94 |
@app.post("/predict")
|
| 95 |
+
def predict(
|
| 96 |
+
payload: Payload,
|
| 97 |
+
mode: str = Query("raw", pattern="^(raw|debias|logit)$"),
|
| 98 |
+
min_conf: float = Query(0.60, ge=0.0, le=1.0),
|
| 99 |
+
neutral_zone: float = Query(0.20, ge=0.0, le=1.0)
|
| 100 |
+
):
|
| 101 |
+
clf = load_pipeline()
|
| 102 |
+
texts = payload.sentences or []
|
| 103 |
+
outs = clf(texts, top_k=None)
|
| 104 |
+
binary_hint = (loaded_model_id == FALLBACK_MODEL)
|
| 105 |
+
results = [scores_to_label(s, mode, binary_hint, min_conf, neutral_zone) for s in outs]
|
| 106 |
return {"model": loaded_model_id, "results": results}
|