CARLEXsX commited on
Commit
a5fc109
·
verified ·
1 Parent(s): 0ab7e80

Update ltx_worker_upscaler.py

Browse files
Files changed (1) hide show
  1. ltx_worker_upscaler.py +2 -7
ltx_worker_upscaler.py CHANGED
@@ -12,10 +12,11 @@ import numpy as np
12
  import imageio
13
  from pathlib import Path
14
  import huggingface_hub
 
15
 
16
  from inference import create_ltx_video_pipeline
17
  from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
18
- from ltx_video.models.autoencoders.vae_encode import vae_decode
19
 
20
  class LtxUpscaler:
21
  def __init__(self, device_id='cuda:0'):
@@ -75,15 +76,10 @@ class LtxUpscaler:
75
  def upscale_latents_to_video(self, latent_path: str, output_path: str, video_fps: int):
76
  print(f"UPSCALER ({self.device}): Processando latentes de {os.path.basename(latent_path)}")
77
 
78
- # Carrega os latentes do disco e os envia para a GPU
79
  latents = torch.load(latent_path).to(self.device, dtype=self.model_dtype)
80
 
81
- # PASSO 1: Upscale Espacial (não precisamos mais de vae_encode)
82
  upsampled_latents = self.latent_upsampler(latents)
83
 
84
- # (Opcional: PASSO 2 - Upscale Temporal seria inserido aqui no futuro)
85
-
86
- # PASSO 3: Decodificação Final
87
  decode_timestep = torch.tensor([0.0] * upsampled_latents.shape[0], device=self.device)
88
  upsampled_video_tensor = vae_decode(
89
  upsampled_latents, self.vae, is_video=True, timestep=decode_timestep
@@ -110,7 +106,6 @@ class LtxUpscaler:
110
  )
111
 
112
  decoded_tensor = (decoded_tensor.clamp(-1, 1) + 1) / 2.0
113
- # Shape: (B, C, F, H, W) -> (H, W, C)
114
  numpy_image = (decoded_tensor[0].permute(2, 3, 1, 0).squeeze().cpu().float().numpy() * 255).astype(np.uint8)
115
  return Image.fromarray(numpy_image)
116
  #--- END OF MODIFIED FILE app_fluxContext_Ltx/ltx_worker_upscaler.py ---
 
12
  import imageio
13
  from pathlib import Path
14
  import huggingface_hub
15
+ from PIL import Image # <--- IMPORTAÇÃO ADICIONADA AQUI
16
 
17
  from inference import create_ltx_video_pipeline
18
  from ltx_video.models.autoencoders.latent_upsampler import LatentUpsampler
19
+ from ltx_video.models.autoencoders.vae_encode import vae_encode, vae_decode
20
 
21
  class LtxUpscaler:
22
  def __init__(self, device_id='cuda:0'):
 
76
  def upscale_latents_to_video(self, latent_path: str, output_path: str, video_fps: int):
77
  print(f"UPSCALER ({self.device}): Processando latentes de {os.path.basename(latent_path)}")
78
 
 
79
  latents = torch.load(latent_path).to(self.device, dtype=self.model_dtype)
80
 
 
81
  upsampled_latents = self.latent_upsampler(latents)
82
 
 
 
 
83
  decode_timestep = torch.tensor([0.0] * upsampled_latents.shape[0], device=self.device)
84
  upsampled_video_tensor = vae_decode(
85
  upsampled_latents, self.vae, is_video=True, timestep=decode_timestep
 
106
  )
107
 
108
  decoded_tensor = (decoded_tensor.clamp(-1, 1) + 1) / 2.0
 
109
  numpy_image = (decoded_tensor[0].permute(2, 3, 1, 0).squeeze().cpu().float().numpy() * 255).astype(np.uint8)
110
  return Image.fromarray(numpy_image)
111
  #--- END OF MODIFIED FILE app_fluxContext_Ltx/ltx_worker_upscaler.py ---