Spaces:
Paused
Paused
| from fastapi import FastAPI | |
| from fastapi.middleware.cors import CORSMiddleware | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
| import torch | |
| import os | |
| import requests | |
| # from langchain.llms.huggingface_pipeline import HuggingFacePipeline | |
| # API_URL = "https://api-inference.huggingface.co/models/mistralai/Mistral-7B-v0.1" | |
| # headers = {"Authorization": f"Bearer {key}"} | |
| # def query(payload): | |
| # response = requests.post(API_URL, headers=headers, json=payload) | |
| # return response.json() | |
| def LLM(llm_name, length): | |
| print(llm_name) | |
| tokenizer = AutoTokenizer.from_pretrained(llm_name) | |
| model = AutoModelForCausalLM.from_pretrained(llm_name,trust_remote_code=True) | |
| pipe = pipeline("text-generation", | |
| model=model, | |
| tokenizer=tokenizer, | |
| max_length=length, | |
| do_sample=True, | |
| top_p=0.95, | |
| repetition_penalty=1.2, | |
| ) | |
| return pipe | |
| pipe = LLM("microsoft/phi-2",2000) | |
| # tokenizer = AutoTokenizer.from_pretrained("WizardLM/WizardCoder-1B-V1.0") | |
| # base_model = AutoModelForCausalLM.from_pretrained("WizardLM/WizardCoder-1B-V1.0") | |
| # Mistral 7B | |
| # mistral_llm = LLM("mistralai/Mistral-7B-v0.1",30000) | |
| mistral_llm = pipe | |
| # WizardCoder 13B | |
| # wizard_llm = LLM("WizardLM/WizardCoder-Python-13B-V1.0",8000) | |
| wizard_llm = pipe | |
| # hf_llm = HuggingFacePipeline(pipeline=pipe) | |
| def ask_model(model, prompt): | |
| if(model == 'mistral'): | |
| return mistral_llm(prompt) | |
| if(model == 'wizard'): | |
| return wizard_llm(prompt) | |
| key = os.environ.get("huggingface_key") | |
| openai_api_key = os.environ.get("openai_key") | |
| app = FastAPI(openapi_url="/api/v1/LLM/openapi.json", docs_url="/api/v1/LLM/docs") | |
| app.add_middleware( | |
| CORSMiddleware, | |
| allow_origins=["*"], | |
| allow_methods=["*"], | |
| allow_headers=["*"], | |
| allow_credentials=True, | |
| ) | |
| def root(): | |
| return {"message": "R&D LLM API"} | |
| # @app.get("/get") | |
| # def get(): | |
| # result = pipe("name 5 programming languages",do_sample=False) | |
| # print(result) | |
| # return {"message": result} | |
| async def ask_llm_endpoint(model:str, prompt: str): | |
| result = ask_model(model,prompt) | |
| return {"result": result} | |
| # APIs | |
| # @app.post("/ask_HFAPI") | |
| # def ask_HFAPI_endpoint(prompt: str): | |
| # result = query(prompt) | |
| # return {"result": result} | |
| from langchain.llms import OpenAI | |
| llm = OpenAI(model_name="text-davinci-003", temperature=0.5, openai_api_key=openai_api_key) | |
| def ask_GPT_endpoint(prompt: str): | |
| result = llm(prompt) | |
| return {"result": result} |