class Tool: def __init__(self): pass def __call__(self, text: str) -> str: return f"Generated speech for: {text}" from generator import load_csm_1b import torchaudio class SesameTTS(Tool): def __init__(self): self.generator = load_csm_1b(device="cpu") def __call__(self, text: str) -> str: audio = self.generator.generate( text=text, speaker=0, context=[], max_audio_length_ms=10000, ) path = "output.wav" torchaudio.save(path, audio.unsqueeze(0).cpu(), self.generator.sample_rate) return path