File size: 24,707 Bytes
359fa44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
import os
from typing import Optional

import torch
from typing_extensions import override

from comfy_api.latest import IO, ComfyExtension
from comfy_api_nodes.apis.tripo_api import (
    TripoAnimateRetargetRequest,
    TripoAnimateRigRequest,
    TripoConvertModelRequest,
    TripoFileEmptyReference,
    TripoFileReference,
    TripoImageToModelRequest,
    TripoModelVersion,
    TripoMultiviewToModelRequest,
    TripoOrientation,
    TripoRefineModelRequest,
    TripoStyle,
    TripoTaskResponse,
    TripoTaskStatus,
    TripoTaskType,
    TripoTextToModelRequest,
    TripoTextureModelRequest,
    TripoUrlReference,
)
from comfy_api_nodes.util import (
    ApiEndpoint,
    download_url_as_bytesio,
    poll_op,
    sync_op,
    upload_images_to_comfyapi,
)
from folder_paths import get_output_directory


def get_model_url_from_response(response: TripoTaskResponse) -> str:
    if response.data is not None:
        for key in ["pbr_model", "model", "base_model"]:
            if getattr(response.data.output, key, None) is not None:
                return getattr(response.data.output, key)
    raise RuntimeError(f"Failed to get model url from response: {response}")


async def poll_until_finished(
    node_cls: type[IO.ComfyNode],
    response: TripoTaskResponse,
    average_duration: Optional[int] = None,
) -> IO.NodeOutput:
    """Polls the Tripo API endpoint until the task reaches a terminal state, then returns the response."""
    if response.code != 0:
        raise RuntimeError(f"Failed to generate mesh: {response.error}")
    task_id = response.data.task_id
    response_poll = await poll_op(
        node_cls,
        poll_endpoint=ApiEndpoint(path=f"/proxy/tripo/v2/openapi/task/{task_id}"),
        response_model=TripoTaskResponse,
        completed_statuses=[TripoTaskStatus.SUCCESS],
        failed_statuses=[
            TripoTaskStatus.FAILED,
            TripoTaskStatus.CANCELLED,
            TripoTaskStatus.UNKNOWN,
            TripoTaskStatus.BANNED,
            TripoTaskStatus.EXPIRED,
        ],
        status_extractor=lambda x: x.data.status,
        progress_extractor=lambda x: x.data.progress,
        estimated_duration=average_duration,
    )
    if response_poll.data.status == TripoTaskStatus.SUCCESS:
        url = get_model_url_from_response(response_poll)
        bytesio = await download_url_as_bytesio(url)
        # Save the downloaded model file
        model_file = f"tripo_model_{task_id}.glb"
        with open(os.path.join(get_output_directory(), model_file), "wb") as f:
            f.write(bytesio.getvalue())
        return IO.NodeOutput(model_file, task_id)
    raise RuntimeError(f"Failed to generate mesh: {response_poll}")


class TripoTextToModelNode(IO.ComfyNode):
    """
    Generates 3D models synchronously based on a text prompt using Tripo's API.
    """

    @classmethod
    def define_schema(cls):
        return IO.Schema(
            node_id="TripoTextToModelNode",
            display_name="Tripo: Text to Model",
            category="api node/3d/Tripo",
            inputs=[
                IO.String.Input("prompt", multiline=True),
                IO.String.Input("negative_prompt", multiline=True, optional=True),
                IO.Combo.Input(
                    "model_version", options=TripoModelVersion, default=TripoModelVersion.v2_5_20250123, optional=True
                ),
                IO.Combo.Input("style", options=TripoStyle, default="None", optional=True),
                IO.Boolean.Input("texture", default=True, optional=True),
                IO.Boolean.Input("pbr", default=True, optional=True),
                IO.Int.Input("image_seed", default=42, optional=True),
                IO.Int.Input("model_seed", default=42, optional=True),
                IO.Int.Input("texture_seed", default=42, optional=True),
                IO.Combo.Input("texture_quality", default="standard", options=["standard", "detailed"], optional=True),
                IO.Int.Input("face_limit", default=-1, min=-1, max=500000, optional=True),
                IO.Boolean.Input("quad", default=False, optional=True),
            ],
            outputs=[
                IO.String.Output(display_name="model_file"),
                IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
            ],
            hidden=[
                IO.Hidden.auth_token_comfy_org,
                IO.Hidden.api_key_comfy_org,
                IO.Hidden.unique_id,
            ],
            is_api_node=True,
            is_output_node=True,
        )

    @classmethod
    async def execute(
        cls,
        prompt: str,
        negative_prompt: Optional[str] = None,
        model_version=None,
        style: Optional[str] = None,
        texture: Optional[bool] = None,
        pbr: Optional[bool] = None,
        image_seed: Optional[int] = None,
        model_seed: Optional[int] = None,
        texture_seed: Optional[int] = None,
        texture_quality: Optional[str] = None,
        face_limit: Optional[int] = None,
        quad: Optional[bool] = None,
    ) -> IO.NodeOutput:
        style_enum = None if style == "None" else style
        if not prompt:
            raise RuntimeError("Prompt is required")
        response = await sync_op(
            cls,
            endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
            response_model=TripoTaskResponse,
            data=TripoTextToModelRequest(
                type=TripoTaskType.TEXT_TO_MODEL,
                prompt=prompt,
                negative_prompt=negative_prompt if negative_prompt else None,
                model_version=model_version,
                style=style_enum,
                texture=texture,
                pbr=pbr,
                image_seed=image_seed,
                model_seed=model_seed,
                texture_seed=texture_seed,
                texture_quality=texture_quality,
                face_limit=face_limit,
                auto_size=True,
                quad=quad,
            ),
        )
        return await poll_until_finished(cls, response, average_duration=80)


class TripoImageToModelNode(IO.ComfyNode):
    """
    Generates 3D models synchronously based on a single image using Tripo's API.
    """

    @classmethod
    def define_schema(cls):
        return IO.Schema(
            node_id="TripoImageToModelNode",
            display_name="Tripo: Image to Model",
            category="api node/3d/Tripo",
            inputs=[
                IO.Image.Input("image"),
                IO.Combo.Input(
                    "model_version",
                    options=TripoModelVersion,
                    tooltip="The model version to use for generation",
                    optional=True,
                ),
                IO.Combo.Input("style", options=TripoStyle, default="None", optional=True),
                IO.Boolean.Input("texture", default=True, optional=True),
                IO.Boolean.Input("pbr", default=True, optional=True),
                IO.Int.Input("model_seed", default=42, optional=True),
                IO.Combo.Input(
                    "orientation", options=TripoOrientation, default=TripoOrientation.DEFAULT, optional=True
                ),
                IO.Int.Input("texture_seed", default=42, optional=True),
                IO.Combo.Input("texture_quality", default="standard", options=["standard", "detailed"], optional=True),
                IO.Combo.Input(
                    "texture_alignment", default="original_image", options=["original_image", "geometry"], optional=True
                ),
                IO.Int.Input("face_limit", default=-1, min=-1, max=500000, optional=True),
                IO.Boolean.Input("quad", default=False, optional=True),
            ],
            outputs=[
                IO.String.Output(display_name="model_file"),
                IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
            ],
            hidden=[
                IO.Hidden.auth_token_comfy_org,
                IO.Hidden.api_key_comfy_org,
                IO.Hidden.unique_id,
            ],
            is_api_node=True,
            is_output_node=True,
        )

    @classmethod
    async def execute(
        cls,
        image: torch.Tensor,
        model_version: Optional[str] = None,
        style: Optional[str] = None,
        texture: Optional[bool] = None,
        pbr: Optional[bool] = None,
        model_seed: Optional[int] = None,
        orientation=None,
        texture_seed: Optional[int] = None,
        texture_quality: Optional[str] = None,
        texture_alignment: Optional[str] = None,
        face_limit: Optional[int] = None,
        quad: Optional[bool] = None,
    ) -> IO.NodeOutput:
        style_enum = None if style == "None" else style
        if image is None:
            raise RuntimeError("Image is required")
        tripo_file = TripoFileReference(
            root=TripoUrlReference(
                url=(await upload_images_to_comfyapi(cls, image, max_images=1))[0],
                type="jpeg",
            )
        )
        response = await sync_op(
            cls,
            endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
            response_model=TripoTaskResponse,
            data=TripoImageToModelRequest(
                type=TripoTaskType.IMAGE_TO_MODEL,
                file=tripo_file,
                model_version=model_version,
                style=style_enum,
                texture=texture,
                pbr=pbr,
                model_seed=model_seed,
                orientation=orientation,
                texture_alignment=texture_alignment,
                texture_seed=texture_seed,
                texture_quality=texture_quality,
                face_limit=face_limit,
                auto_size=True,
                quad=quad,
            ),
        )
        return await poll_until_finished(cls, response, average_duration=80)


class TripoMultiviewToModelNode(IO.ComfyNode):
    """
    Generates 3D models synchronously based on up to four images (front, left, back, right) using Tripo's API.
    """

    @classmethod
    def define_schema(cls):
        return IO.Schema(
            node_id="TripoMultiviewToModelNode",
            display_name="Tripo: Multiview to Model",
            category="api node/3d/Tripo",
            inputs=[
                IO.Image.Input("image"),
                IO.Image.Input("image_left", optional=True),
                IO.Image.Input("image_back", optional=True),
                IO.Image.Input("image_right", optional=True),
                IO.Combo.Input(
                    "model_version",
                    options=TripoModelVersion,
                    optional=True,
                    tooltip="The model version to use for generation",
                ),
                IO.Combo.Input(
                    "orientation",
                    options=TripoOrientation,
                    default=TripoOrientation.DEFAULT,
                    optional=True,
                ),
                IO.Boolean.Input("texture", default=True, optional=True),
                IO.Boolean.Input("pbr", default=True, optional=True),
                IO.Int.Input("model_seed", default=42, optional=True),
                IO.Int.Input("texture_seed", default=42, optional=True),
                IO.Combo.Input("texture_quality", default="standard", options=["standard", "detailed"], optional=True),
                IO.Combo.Input(
                    "texture_alignment", default="original_image", options=["original_image", "geometry"], optional=True
                ),
                IO.Int.Input("face_limit", default=-1, min=-1, max=500000, optional=True),
                IO.Boolean.Input("quad", default=False, optional=True),
            ],
            outputs=[
                IO.String.Output(display_name="model_file"),
                IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
            ],
            hidden=[
                IO.Hidden.auth_token_comfy_org,
                IO.Hidden.api_key_comfy_org,
                IO.Hidden.unique_id,
            ],
            is_api_node=True,
            is_output_node=True,
        )

    @classmethod
    async def execute(
        cls,
        image: torch.Tensor,
        image_left: Optional[torch.Tensor] = None,
        image_back: Optional[torch.Tensor] = None,
        image_right: Optional[torch.Tensor] = None,
        model_version: Optional[str] = None,
        orientation: Optional[str] = None,
        texture: Optional[bool] = None,
        pbr: Optional[bool] = None,
        model_seed: Optional[int] = None,
        texture_seed: Optional[int] = None,
        texture_quality: Optional[str] = None,
        texture_alignment: Optional[str] = None,
        face_limit: Optional[int] = None,
        quad: Optional[bool] = None,
    ) -> IO.NodeOutput:
        if image is None:
            raise RuntimeError("front image for multiview is required")
        images = []
        image_dict = {"image": image, "image_left": image_left, "image_back": image_back, "image_right": image_right}
        if image_left is None and image_back is None and image_right is None:
            raise RuntimeError("At least one of left, back, or right image must be provided for multiview")
        for image_name in ["image", "image_left", "image_back", "image_right"]:
            image_ = image_dict[image_name]
            if image_ is not None:
                images.append(
                    TripoFileReference(
                        root=TripoUrlReference(
                            url=(await upload_images_to_comfyapi(cls, image_, max_images=1))[0], type="jpeg"
                        )
                    )
                )
            else:
                images.append(TripoFileEmptyReference())
        response = await sync_op(
            cls,
            ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
            response_model=TripoTaskResponse,
            data=TripoMultiviewToModelRequest(
                type=TripoTaskType.MULTIVIEW_TO_MODEL,
                files=images,
                model_version=model_version,
                orientation=orientation,
                texture=texture,
                pbr=pbr,
                model_seed=model_seed,
                texture_seed=texture_seed,
                texture_quality=texture_quality,
                texture_alignment=texture_alignment,
                face_limit=face_limit,
                quad=quad,
            ),
        )
        return await poll_until_finished(cls, response, average_duration=80)


class TripoTextureNode(IO.ComfyNode):

    @classmethod
    def define_schema(cls):
        return IO.Schema(
            node_id="TripoTextureNode",
            display_name="Tripo: Texture model",
            category="api node/3d/Tripo",
            inputs=[
                IO.Custom("MODEL_TASK_ID").Input("model_task_id"),
                IO.Boolean.Input("texture", default=True, optional=True),
                IO.Boolean.Input("pbr", default=True, optional=True),
                IO.Int.Input("texture_seed", default=42, optional=True),
                IO.Combo.Input("texture_quality", default="standard", options=["standard", "detailed"], optional=True),
                IO.Combo.Input(
                    "texture_alignment", default="original_image", options=["original_image", "geometry"], optional=True
                ),
            ],
            outputs=[
                IO.String.Output(display_name="model_file"),
                IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
            ],
            hidden=[
                IO.Hidden.auth_token_comfy_org,
                IO.Hidden.api_key_comfy_org,
                IO.Hidden.unique_id,
            ],
            is_api_node=True,
            is_output_node=True,
        )

    @classmethod
    async def execute(
        cls,
        model_task_id,
        texture: Optional[bool] = None,
        pbr: Optional[bool] = None,
        texture_seed: Optional[int] = None,
        texture_quality: Optional[str] = None,
        texture_alignment: Optional[str] = None,
    ) -> IO.NodeOutput:
        response = await sync_op(
            cls,
            endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
            response_model=TripoTaskResponse,
            data=TripoTextureModelRequest(
                original_model_task_id=model_task_id,
                texture=texture,
                pbr=pbr,
                texture_seed=texture_seed,
                texture_quality=texture_quality,
                texture_alignment=texture_alignment,
            ),
        )
        return await poll_until_finished(cls, response, average_duration=80)


class TripoRefineNode(IO.ComfyNode):

    @classmethod
    def define_schema(cls):
        return IO.Schema(
            node_id="TripoRefineNode",
            display_name="Tripo: Refine Draft model",
            category="api node/3d/Tripo",
            description="Refine a draft model created by v1.4 Tripo models only.",
            inputs=[
                IO.Custom("MODEL_TASK_ID").Input("model_task_id", tooltip="Must be a v1.4 Tripo model"),
            ],
            outputs=[
                IO.String.Output(display_name="model_file"),
                IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
            ],
            hidden=[
                IO.Hidden.auth_token_comfy_org,
                IO.Hidden.api_key_comfy_org,
                IO.Hidden.unique_id,
            ],
            is_api_node=True,
            is_output_node=True,
        )

    @classmethod
    async def execute(cls, model_task_id) -> IO.NodeOutput:
        response = await sync_op(
            cls,
            endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
            response_model=TripoTaskResponse,
            data=TripoRefineModelRequest(draft_model_task_id=model_task_id),
        )
        return await poll_until_finished(cls, response, average_duration=240)


class TripoRigNode(IO.ComfyNode):

    @classmethod
    def define_schema(cls):
        return IO.Schema(
            node_id="TripoRigNode",
            display_name="Tripo: Rig model",
            category="api node/3d/Tripo",
            inputs=[IO.Custom("MODEL_TASK_ID").Input("original_model_task_id")],
            outputs=[
                IO.String.Output(display_name="model_file"),
                IO.Custom("RIG_TASK_ID").Output(display_name="rig task_id"),
            ],
            hidden=[
                IO.Hidden.auth_token_comfy_org,
                IO.Hidden.api_key_comfy_org,
                IO.Hidden.unique_id,
            ],
            is_api_node=True,
            is_output_node=True,
        )

    @classmethod
    async def execute(cls, original_model_task_id) -> IO.NodeOutput:
        response = await sync_op(
            cls,
            endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
            response_model=TripoTaskResponse,
            data=TripoAnimateRigRequest(original_model_task_id=original_model_task_id, out_format="glb", spec="tripo"),
        )
        return await poll_until_finished(cls, response, average_duration=180)


class TripoRetargetNode(IO.ComfyNode):

    @classmethod
    def define_schema(cls):
        return IO.Schema(
            node_id="TripoRetargetNode",
            display_name="Tripo: Retarget rigged model",
            category="api node/3d/Tripo",
            inputs=[
                IO.Custom("RIG_TASK_ID").Input("original_model_task_id"),
                IO.Combo.Input(
                    "animation",
                    options=[
                        "preset:idle",
                        "preset:walk",
                        "preset:climb",
                        "preset:jump",
                        "preset:slash",
                        "preset:shoot",
                        "preset:hurt",
                        "preset:fall",
                        "preset:turn",
                    ],
                ),
            ],
            outputs=[
                IO.String.Output(display_name="model_file"),
                IO.Custom("RETARGET_TASK_ID").Output(display_name="retarget task_id"),
            ],
            hidden=[
                IO.Hidden.auth_token_comfy_org,
                IO.Hidden.api_key_comfy_org,
                IO.Hidden.unique_id,
            ],
            is_api_node=True,
            is_output_node=True,
        )

    @classmethod
    async def execute(cls, original_model_task_id, animation: str) -> IO.NodeOutput:
        response = await sync_op(
            cls,
            endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
            response_model=TripoTaskResponse,
            data=TripoAnimateRetargetRequest(
                original_model_task_id=original_model_task_id,
                animation=animation,
                out_format="glb",
                bake_animation=True,
            ),
        )
        return await poll_until_finished(cls, response, average_duration=30)


class TripoConversionNode(IO.ComfyNode):

    @classmethod
    def define_schema(cls):
        return IO.Schema(
            node_id="TripoConversionNode",
            display_name="Tripo: Convert model",
            category="api node/3d/Tripo",
            inputs=[
                IO.Custom("MODEL_TASK_ID,RIG_TASK_ID,RETARGET_TASK_ID").Input("original_model_task_id"),
                IO.Combo.Input("format", options=["GLTF", "USDZ", "FBX", "OBJ", "STL", "3MF"]),
                IO.Boolean.Input("quad", default=False, optional=True),
                IO.Int.Input(
                    "face_limit",
                    default=-1,
                    min=-1,
                    max=500000,
                    optional=True,
                ),
                IO.Int.Input(
                    "texture_size",
                    default=4096,
                    min=128,
                    max=4096,
                    optional=True,
                ),
                IO.Combo.Input(
                    "texture_format",
                    options=["BMP", "DPX", "HDR", "JPEG", "OPEN_EXR", "PNG", "TARGA", "TIFF", "WEBP"],
                    default="JPEG",
                    optional=True,
                ),
            ],
            outputs=[],
            hidden=[
                IO.Hidden.auth_token_comfy_org,
                IO.Hidden.api_key_comfy_org,
                IO.Hidden.unique_id,
            ],
            is_api_node=True,
            is_output_node=True,
        )

    @classmethod
    def validate_inputs(cls, input_types):
        # The min and max of input1 and input2 are still validated because
        # we didn't take `input1` or `input2` as arguments
        if input_types["original_model_task_id"] not in ("MODEL_TASK_ID", "RIG_TASK_ID", "RETARGET_TASK_ID"):
            return "original_model_task_id must be MODEL_TASK_ID, RIG_TASK_ID or RETARGET_TASK_ID type"
        return True

    @classmethod
    async def execute(
        cls,
        original_model_task_id,
        format: str,
        quad: bool,
        face_limit: int,
        texture_size: int,
        texture_format: str,
    ) -> IO.NodeOutput:
        if not original_model_task_id:
            raise RuntimeError("original_model_task_id is required")
        response = await sync_op(
            cls,
            endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
            response_model=TripoTaskResponse,
            data=TripoConvertModelRequest(
                original_model_task_id=original_model_task_id,
                format=format,
                quad=quad if quad else None,
                face_limit=face_limit if face_limit != -1 else None,
                texture_size=texture_size if texture_size != 4096 else None,
                texture_format=texture_format if texture_format != "JPEG" else None,
            ),
        )
        return await poll_until_finished(cls, response, average_duration=30)


class TripoExtension(ComfyExtension):
    @override
    async def get_node_list(self) -> list[type[IO.ComfyNode]]:
        return [
            TripoTextToModelNode,
            TripoImageToModelNode,
            TripoMultiviewToModelNode,
            TripoTextureNode,
            TripoRefineNode,
            TripoRigNode,
            TripoRetargetNode,
            TripoConversionNode,
        ]


async def comfy_entrypoint() -> TripoExtension:
    return TripoExtension()