File size: 24,707 Bytes
359fa44 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 |
import os
from typing import Optional
import torch
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension
from comfy_api_nodes.apis.tripo_api import (
TripoAnimateRetargetRequest,
TripoAnimateRigRequest,
TripoConvertModelRequest,
TripoFileEmptyReference,
TripoFileReference,
TripoImageToModelRequest,
TripoModelVersion,
TripoMultiviewToModelRequest,
TripoOrientation,
TripoRefineModelRequest,
TripoStyle,
TripoTaskResponse,
TripoTaskStatus,
TripoTaskType,
TripoTextToModelRequest,
TripoTextureModelRequest,
TripoUrlReference,
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_as_bytesio,
poll_op,
sync_op,
upload_images_to_comfyapi,
)
from folder_paths import get_output_directory
def get_model_url_from_response(response: TripoTaskResponse) -> str:
if response.data is not None:
for key in ["pbr_model", "model", "base_model"]:
if getattr(response.data.output, key, None) is not None:
return getattr(response.data.output, key)
raise RuntimeError(f"Failed to get model url from response: {response}")
async def poll_until_finished(
node_cls: type[IO.ComfyNode],
response: TripoTaskResponse,
average_duration: Optional[int] = None,
) -> IO.NodeOutput:
"""Polls the Tripo API endpoint until the task reaches a terminal state, then returns the response."""
if response.code != 0:
raise RuntimeError(f"Failed to generate mesh: {response.error}")
task_id = response.data.task_id
response_poll = await poll_op(
node_cls,
poll_endpoint=ApiEndpoint(path=f"/proxy/tripo/v2/openapi/task/{task_id}"),
response_model=TripoTaskResponse,
completed_statuses=[TripoTaskStatus.SUCCESS],
failed_statuses=[
TripoTaskStatus.FAILED,
TripoTaskStatus.CANCELLED,
TripoTaskStatus.UNKNOWN,
TripoTaskStatus.BANNED,
TripoTaskStatus.EXPIRED,
],
status_extractor=lambda x: x.data.status,
progress_extractor=lambda x: x.data.progress,
estimated_duration=average_duration,
)
if response_poll.data.status == TripoTaskStatus.SUCCESS:
url = get_model_url_from_response(response_poll)
bytesio = await download_url_as_bytesio(url)
# Save the downloaded model file
model_file = f"tripo_model_{task_id}.glb"
with open(os.path.join(get_output_directory(), model_file), "wb") as f:
f.write(bytesio.getvalue())
return IO.NodeOutput(model_file, task_id)
raise RuntimeError(f"Failed to generate mesh: {response_poll}")
class TripoTextToModelNode(IO.ComfyNode):
"""
Generates 3D models synchronously based on a text prompt using Tripo's API.
"""
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TripoTextToModelNode",
display_name="Tripo: Text to Model",
category="api node/3d/Tripo",
inputs=[
IO.String.Input("prompt", multiline=True),
IO.String.Input("negative_prompt", multiline=True, optional=True),
IO.Combo.Input(
"model_version", options=TripoModelVersion, default=TripoModelVersion.v2_5_20250123, optional=True
),
IO.Combo.Input("style", options=TripoStyle, default="None", optional=True),
IO.Boolean.Input("texture", default=True, optional=True),
IO.Boolean.Input("pbr", default=True, optional=True),
IO.Int.Input("image_seed", default=42, optional=True),
IO.Int.Input("model_seed", default=42, optional=True),
IO.Int.Input("texture_seed", default=42, optional=True),
IO.Combo.Input("texture_quality", default="standard", options=["standard", "detailed"], optional=True),
IO.Int.Input("face_limit", default=-1, min=-1, max=500000, optional=True),
IO.Boolean.Input("quad", default=False, optional=True),
],
outputs=[
IO.String.Output(display_name="model_file"),
IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
)
@classmethod
async def execute(
cls,
prompt: str,
negative_prompt: Optional[str] = None,
model_version=None,
style: Optional[str] = None,
texture: Optional[bool] = None,
pbr: Optional[bool] = None,
image_seed: Optional[int] = None,
model_seed: Optional[int] = None,
texture_seed: Optional[int] = None,
texture_quality: Optional[str] = None,
face_limit: Optional[int] = None,
quad: Optional[bool] = None,
) -> IO.NodeOutput:
style_enum = None if style == "None" else style
if not prompt:
raise RuntimeError("Prompt is required")
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
response_model=TripoTaskResponse,
data=TripoTextToModelRequest(
type=TripoTaskType.TEXT_TO_MODEL,
prompt=prompt,
negative_prompt=negative_prompt if negative_prompt else None,
model_version=model_version,
style=style_enum,
texture=texture,
pbr=pbr,
image_seed=image_seed,
model_seed=model_seed,
texture_seed=texture_seed,
texture_quality=texture_quality,
face_limit=face_limit,
auto_size=True,
quad=quad,
),
)
return await poll_until_finished(cls, response, average_duration=80)
class TripoImageToModelNode(IO.ComfyNode):
"""
Generates 3D models synchronously based on a single image using Tripo's API.
"""
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TripoImageToModelNode",
display_name="Tripo: Image to Model",
category="api node/3d/Tripo",
inputs=[
IO.Image.Input("image"),
IO.Combo.Input(
"model_version",
options=TripoModelVersion,
tooltip="The model version to use for generation",
optional=True,
),
IO.Combo.Input("style", options=TripoStyle, default="None", optional=True),
IO.Boolean.Input("texture", default=True, optional=True),
IO.Boolean.Input("pbr", default=True, optional=True),
IO.Int.Input("model_seed", default=42, optional=True),
IO.Combo.Input(
"orientation", options=TripoOrientation, default=TripoOrientation.DEFAULT, optional=True
),
IO.Int.Input("texture_seed", default=42, optional=True),
IO.Combo.Input("texture_quality", default="standard", options=["standard", "detailed"], optional=True),
IO.Combo.Input(
"texture_alignment", default="original_image", options=["original_image", "geometry"], optional=True
),
IO.Int.Input("face_limit", default=-1, min=-1, max=500000, optional=True),
IO.Boolean.Input("quad", default=False, optional=True),
],
outputs=[
IO.String.Output(display_name="model_file"),
IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
)
@classmethod
async def execute(
cls,
image: torch.Tensor,
model_version: Optional[str] = None,
style: Optional[str] = None,
texture: Optional[bool] = None,
pbr: Optional[bool] = None,
model_seed: Optional[int] = None,
orientation=None,
texture_seed: Optional[int] = None,
texture_quality: Optional[str] = None,
texture_alignment: Optional[str] = None,
face_limit: Optional[int] = None,
quad: Optional[bool] = None,
) -> IO.NodeOutput:
style_enum = None if style == "None" else style
if image is None:
raise RuntimeError("Image is required")
tripo_file = TripoFileReference(
root=TripoUrlReference(
url=(await upload_images_to_comfyapi(cls, image, max_images=1))[0],
type="jpeg",
)
)
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
response_model=TripoTaskResponse,
data=TripoImageToModelRequest(
type=TripoTaskType.IMAGE_TO_MODEL,
file=tripo_file,
model_version=model_version,
style=style_enum,
texture=texture,
pbr=pbr,
model_seed=model_seed,
orientation=orientation,
texture_alignment=texture_alignment,
texture_seed=texture_seed,
texture_quality=texture_quality,
face_limit=face_limit,
auto_size=True,
quad=quad,
),
)
return await poll_until_finished(cls, response, average_duration=80)
class TripoMultiviewToModelNode(IO.ComfyNode):
"""
Generates 3D models synchronously based on up to four images (front, left, back, right) using Tripo's API.
"""
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TripoMultiviewToModelNode",
display_name="Tripo: Multiview to Model",
category="api node/3d/Tripo",
inputs=[
IO.Image.Input("image"),
IO.Image.Input("image_left", optional=True),
IO.Image.Input("image_back", optional=True),
IO.Image.Input("image_right", optional=True),
IO.Combo.Input(
"model_version",
options=TripoModelVersion,
optional=True,
tooltip="The model version to use for generation",
),
IO.Combo.Input(
"orientation",
options=TripoOrientation,
default=TripoOrientation.DEFAULT,
optional=True,
),
IO.Boolean.Input("texture", default=True, optional=True),
IO.Boolean.Input("pbr", default=True, optional=True),
IO.Int.Input("model_seed", default=42, optional=True),
IO.Int.Input("texture_seed", default=42, optional=True),
IO.Combo.Input("texture_quality", default="standard", options=["standard", "detailed"], optional=True),
IO.Combo.Input(
"texture_alignment", default="original_image", options=["original_image", "geometry"], optional=True
),
IO.Int.Input("face_limit", default=-1, min=-1, max=500000, optional=True),
IO.Boolean.Input("quad", default=False, optional=True),
],
outputs=[
IO.String.Output(display_name="model_file"),
IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
)
@classmethod
async def execute(
cls,
image: torch.Tensor,
image_left: Optional[torch.Tensor] = None,
image_back: Optional[torch.Tensor] = None,
image_right: Optional[torch.Tensor] = None,
model_version: Optional[str] = None,
orientation: Optional[str] = None,
texture: Optional[bool] = None,
pbr: Optional[bool] = None,
model_seed: Optional[int] = None,
texture_seed: Optional[int] = None,
texture_quality: Optional[str] = None,
texture_alignment: Optional[str] = None,
face_limit: Optional[int] = None,
quad: Optional[bool] = None,
) -> IO.NodeOutput:
if image is None:
raise RuntimeError("front image for multiview is required")
images = []
image_dict = {"image": image, "image_left": image_left, "image_back": image_back, "image_right": image_right}
if image_left is None and image_back is None and image_right is None:
raise RuntimeError("At least one of left, back, or right image must be provided for multiview")
for image_name in ["image", "image_left", "image_back", "image_right"]:
image_ = image_dict[image_name]
if image_ is not None:
images.append(
TripoFileReference(
root=TripoUrlReference(
url=(await upload_images_to_comfyapi(cls, image_, max_images=1))[0], type="jpeg"
)
)
)
else:
images.append(TripoFileEmptyReference())
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
response_model=TripoTaskResponse,
data=TripoMultiviewToModelRequest(
type=TripoTaskType.MULTIVIEW_TO_MODEL,
files=images,
model_version=model_version,
orientation=orientation,
texture=texture,
pbr=pbr,
model_seed=model_seed,
texture_seed=texture_seed,
texture_quality=texture_quality,
texture_alignment=texture_alignment,
face_limit=face_limit,
quad=quad,
),
)
return await poll_until_finished(cls, response, average_duration=80)
class TripoTextureNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TripoTextureNode",
display_name="Tripo: Texture model",
category="api node/3d/Tripo",
inputs=[
IO.Custom("MODEL_TASK_ID").Input("model_task_id"),
IO.Boolean.Input("texture", default=True, optional=True),
IO.Boolean.Input("pbr", default=True, optional=True),
IO.Int.Input("texture_seed", default=42, optional=True),
IO.Combo.Input("texture_quality", default="standard", options=["standard", "detailed"], optional=True),
IO.Combo.Input(
"texture_alignment", default="original_image", options=["original_image", "geometry"], optional=True
),
],
outputs=[
IO.String.Output(display_name="model_file"),
IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
)
@classmethod
async def execute(
cls,
model_task_id,
texture: Optional[bool] = None,
pbr: Optional[bool] = None,
texture_seed: Optional[int] = None,
texture_quality: Optional[str] = None,
texture_alignment: Optional[str] = None,
) -> IO.NodeOutput:
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
response_model=TripoTaskResponse,
data=TripoTextureModelRequest(
original_model_task_id=model_task_id,
texture=texture,
pbr=pbr,
texture_seed=texture_seed,
texture_quality=texture_quality,
texture_alignment=texture_alignment,
),
)
return await poll_until_finished(cls, response, average_duration=80)
class TripoRefineNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TripoRefineNode",
display_name="Tripo: Refine Draft model",
category="api node/3d/Tripo",
description="Refine a draft model created by v1.4 Tripo models only.",
inputs=[
IO.Custom("MODEL_TASK_ID").Input("model_task_id", tooltip="Must be a v1.4 Tripo model"),
],
outputs=[
IO.String.Output(display_name="model_file"),
IO.Custom("MODEL_TASK_ID").Output(display_name="model task_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
)
@classmethod
async def execute(cls, model_task_id) -> IO.NodeOutput:
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
response_model=TripoTaskResponse,
data=TripoRefineModelRequest(draft_model_task_id=model_task_id),
)
return await poll_until_finished(cls, response, average_duration=240)
class TripoRigNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TripoRigNode",
display_name="Tripo: Rig model",
category="api node/3d/Tripo",
inputs=[IO.Custom("MODEL_TASK_ID").Input("original_model_task_id")],
outputs=[
IO.String.Output(display_name="model_file"),
IO.Custom("RIG_TASK_ID").Output(display_name="rig task_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
)
@classmethod
async def execute(cls, original_model_task_id) -> IO.NodeOutput:
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
response_model=TripoTaskResponse,
data=TripoAnimateRigRequest(original_model_task_id=original_model_task_id, out_format="glb", spec="tripo"),
)
return await poll_until_finished(cls, response, average_duration=180)
class TripoRetargetNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TripoRetargetNode",
display_name="Tripo: Retarget rigged model",
category="api node/3d/Tripo",
inputs=[
IO.Custom("RIG_TASK_ID").Input("original_model_task_id"),
IO.Combo.Input(
"animation",
options=[
"preset:idle",
"preset:walk",
"preset:climb",
"preset:jump",
"preset:slash",
"preset:shoot",
"preset:hurt",
"preset:fall",
"preset:turn",
],
),
],
outputs=[
IO.String.Output(display_name="model_file"),
IO.Custom("RETARGET_TASK_ID").Output(display_name="retarget task_id"),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
)
@classmethod
async def execute(cls, original_model_task_id, animation: str) -> IO.NodeOutput:
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
response_model=TripoTaskResponse,
data=TripoAnimateRetargetRequest(
original_model_task_id=original_model_task_id,
animation=animation,
out_format="glb",
bake_animation=True,
),
)
return await poll_until_finished(cls, response, average_duration=30)
class TripoConversionNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="TripoConversionNode",
display_name="Tripo: Convert model",
category="api node/3d/Tripo",
inputs=[
IO.Custom("MODEL_TASK_ID,RIG_TASK_ID,RETARGET_TASK_ID").Input("original_model_task_id"),
IO.Combo.Input("format", options=["GLTF", "USDZ", "FBX", "OBJ", "STL", "3MF"]),
IO.Boolean.Input("quad", default=False, optional=True),
IO.Int.Input(
"face_limit",
default=-1,
min=-1,
max=500000,
optional=True,
),
IO.Int.Input(
"texture_size",
default=4096,
min=128,
max=4096,
optional=True,
),
IO.Combo.Input(
"texture_format",
options=["BMP", "DPX", "HDR", "JPEG", "OPEN_EXR", "PNG", "TARGA", "TIFF", "WEBP"],
default="JPEG",
optional=True,
),
],
outputs=[],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
is_output_node=True,
)
@classmethod
def validate_inputs(cls, input_types):
# The min and max of input1 and input2 are still validated because
# we didn't take `input1` or `input2` as arguments
if input_types["original_model_task_id"] not in ("MODEL_TASK_ID", "RIG_TASK_ID", "RETARGET_TASK_ID"):
return "original_model_task_id must be MODEL_TASK_ID, RIG_TASK_ID or RETARGET_TASK_ID type"
return True
@classmethod
async def execute(
cls,
original_model_task_id,
format: str,
quad: bool,
face_limit: int,
texture_size: int,
texture_format: str,
) -> IO.NodeOutput:
if not original_model_task_id:
raise RuntimeError("original_model_task_id is required")
response = await sync_op(
cls,
endpoint=ApiEndpoint(path="/proxy/tripo/v2/openapi/task", method="POST"),
response_model=TripoTaskResponse,
data=TripoConvertModelRequest(
original_model_task_id=original_model_task_id,
format=format,
quad=quad if quad else None,
face_limit=face_limit if face_limit != -1 else None,
texture_size=texture_size if texture_size != 4096 else None,
texture_format=texture_format if texture_format != "JPEG" else None,
),
)
return await poll_until_finished(cls, response, average_duration=30)
class TripoExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
TripoTextToModelNode,
TripoImageToModelNode,
TripoMultiviewToModelNode,
TripoTextureNode,
TripoRefineNode,
TripoRigNode,
TripoRetargetNode,
TripoConversionNode,
]
async def comfy_entrypoint() -> TripoExtension:
return TripoExtension()
|