File size: 4,962 Bytes
b50f432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import gdown
from deepface.commons import package_utils, folder_utils
from deepface.models.FacialRecognition import FacialRecognition

from deepface.commons import logger as log

logger = log.get_singletonish_logger()

# pylint: disable=unsubscriptable-object

# --------------------------------
# dependency configuration

tf_version = package_utils.get_tf_major_version()

if tf_version == 1:
    from keras.models import Model
    from keras.engine import training
    from keras.layers import (
        ZeroPadding2D,
        Input,
        Conv2D,
        BatchNormalization,
        PReLU,
        Add,
        Dropout,
        Flatten,
        Dense,
    )
else:
    from tensorflow.keras.models import Model
    from tensorflow.python.keras.engine import training
    from tensorflow.keras.layers import (
        ZeroPadding2D,
        Input,
        Conv2D,
        BatchNormalization,
        PReLU,
        Add,
        Dropout,
        Flatten,
        Dense,
    )

# pylint: disable=too-few-public-methods
class ArcFaceClient(FacialRecognition):
    """
    ArcFace model class
    """

    def __init__(self):
        self.model = load_model()
        self.model_name = "ArcFace"
        self.input_shape = (112, 112)
        self.output_shape = 512


def load_model(
    url="https://github.com/serengil/deepface_models/releases/download/v1.0/arcface_weights.h5",
) -> Model:
    """
    Construct ArcFace model, download its weights and load
    Returns:
        model (Model)
    """
    base_model = ResNet34()
    inputs = base_model.inputs[0]
    arcface_model = base_model.outputs[0]
    arcface_model = BatchNormalization(momentum=0.9, epsilon=2e-5)(arcface_model)
    arcface_model = Dropout(0.4)(arcface_model)
    arcface_model = Flatten()(arcface_model)
    arcface_model = Dense(512, activation=None, use_bias=True, kernel_initializer="glorot_normal")(
        arcface_model
    )
    embedding = BatchNormalization(momentum=0.9, epsilon=2e-5, name="embedding", scale=True)(
        arcface_model
    )
    model = Model(inputs, embedding, name=base_model.name)

    # ---------------------------------------
    # check the availability of pre-trained weights

    home = folder_utils.get_deepface_home()

    file_name = "arcface_weights.h5"
    output = home + "/.deepface/weights/" + file_name

    if os.path.isfile(output) != True:

        logger.info(f"{file_name} will be downloaded to {output}")
        gdown.download(url, output, quiet=False)

    # ---------------------------------------

    model.load_weights(output)

    return model


def ResNet34() -> Model:
    """
    ResNet34 model
    Returns:
        model (Model)
    """
    img_input = Input(shape=(112, 112, 3))

    x = ZeroPadding2D(padding=1, name="conv1_pad")(img_input)
    x = Conv2D(
        64, 3, strides=1, use_bias=False, kernel_initializer="glorot_normal", name="conv1_conv"
    )(x)
    x = BatchNormalization(axis=3, epsilon=2e-5, momentum=0.9, name="conv1_bn")(x)
    x = PReLU(shared_axes=[1, 2], name="conv1_prelu")(x)
    x = stack_fn(x)

    model = training.Model(img_input, x, name="ResNet34")

    return model


def block1(x, filters, kernel_size=3, stride=1, conv_shortcut=True, name=None):
    bn_axis = 3

    if conv_shortcut:
        shortcut = Conv2D(
            filters,
            1,
            strides=stride,
            use_bias=False,
            kernel_initializer="glorot_normal",
            name=name + "_0_conv",
        )(x)
        shortcut = BatchNormalization(
            axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + "_0_bn"
        )(shortcut)
    else:
        shortcut = x

    x = BatchNormalization(axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + "_1_bn")(x)
    x = ZeroPadding2D(padding=1, name=name + "_1_pad")(x)
    x = Conv2D(
        filters,
        3,
        strides=1,
        kernel_initializer="glorot_normal",
        use_bias=False,
        name=name + "_1_conv",
    )(x)
    x = BatchNormalization(axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + "_2_bn")(x)
    x = PReLU(shared_axes=[1, 2], name=name + "_1_prelu")(x)

    x = ZeroPadding2D(padding=1, name=name + "_2_pad")(x)
    x = Conv2D(
        filters,
        kernel_size,
        strides=stride,
        kernel_initializer="glorot_normal",
        use_bias=False,
        name=name + "_2_conv",
    )(x)
    x = BatchNormalization(axis=bn_axis, epsilon=2e-5, momentum=0.9, name=name + "_3_bn")(x)

    x = Add(name=name + "_add")([shortcut, x])
    return x


def stack1(x, filters, blocks, stride1=2, name=None):
    x = block1(x, filters, stride=stride1, name=name + "_block1")
    for i in range(2, blocks + 1):
        x = block1(x, filters, conv_shortcut=False, name=name + "_block" + str(i))
    return x


def stack_fn(x):
    x = stack1(x, 64, 3, name="conv2")
    x = stack1(x, 128, 4, name="conv3")
    x = stack1(x, 256, 6, name="conv4")
    return stack1(x, 512, 3, name="conv5")