Spaces:
Runtime error
Runtime error
| import os | |
| import gdown | |
| from deepface.commons import package_utils, folder_utils | |
| from deepface.models.FacialRecognition import FacialRecognition | |
| from deepface.commons import logger as log | |
| logger = log.get_singletonish_logger() | |
| # -------------------------------- | |
| # dependency configuration | |
| tf_version = package_utils.get_tf_major_version() | |
| if tf_version == 1: | |
| from keras.models import Model | |
| from keras.layers import Activation | |
| from keras.layers import BatchNormalization | |
| from keras.layers import Concatenate | |
| from keras.layers import Conv2D | |
| from keras.layers import Dense | |
| from keras.layers import Dropout | |
| from keras.layers import GlobalAveragePooling2D | |
| from keras.layers import Input | |
| from keras.layers import Lambda | |
| from keras.layers import MaxPooling2D | |
| from keras.layers import add | |
| from keras import backend as K | |
| else: | |
| from tensorflow.keras.models import Model | |
| from tensorflow.keras.layers import Activation | |
| from tensorflow.keras.layers import BatchNormalization | |
| from tensorflow.keras.layers import Concatenate | |
| from tensorflow.keras.layers import Conv2D | |
| from tensorflow.keras.layers import Dense | |
| from tensorflow.keras.layers import Dropout | |
| from tensorflow.keras.layers import GlobalAveragePooling2D | |
| from tensorflow.keras.layers import Input | |
| from tensorflow.keras.layers import Lambda | |
| from tensorflow.keras.layers import MaxPooling2D | |
| from tensorflow.keras.layers import add | |
| from tensorflow.keras import backend as K | |
| # -------------------------------- | |
| # pylint: disable=too-few-public-methods | |
| class FaceNet128dClient(FacialRecognition): | |
| """ | |
| FaceNet-128d model class | |
| """ | |
| def __init__(self): | |
| self.model = load_facenet128d_model() | |
| self.model_name = "FaceNet-128d" | |
| self.input_shape = (160, 160) | |
| self.output_shape = 128 | |
| class FaceNet512dClient(FacialRecognition): | |
| """ | |
| FaceNet-1512d model class | |
| """ | |
| def __init__(self): | |
| self.model = load_facenet512d_model() | |
| self.model_name = "FaceNet-512d" | |
| self.input_shape = (160, 160) | |
| self.output_shape = 512 | |
| def scaling(x, scale): | |
| return x * scale | |
| def InceptionResNetV1(dimension: int = 128) -> Model: | |
| """ | |
| InceptionResNetV1 model heavily inspired from | |
| github.com/davidsandberg/facenet/blob/master/src/models/inception_resnet_v1.py | |
| As mentioned in Sandberg's repo's readme, pre-trained models are using Inception ResNet v1 | |
| Besides training process is documented at | |
| sefiks.com/2018/09/03/face-recognition-with-facenet-in-keras/ | |
| Args: | |
| dimension (int): number of dimensions in the embedding layer | |
| Returns: | |
| model (Model) | |
| """ | |
| inputs = Input(shape=(160, 160, 3)) | |
| x = Conv2D(32, 3, strides=2, padding="valid", use_bias=False, name="Conv2d_1a_3x3")(inputs) | |
| x = BatchNormalization( | |
| axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Conv2d_1a_3x3_BatchNorm" | |
| )(x) | |
| x = Activation("relu", name="Conv2d_1a_3x3_Activation")(x) | |
| x = Conv2D(32, 3, strides=1, padding="valid", use_bias=False, name="Conv2d_2a_3x3")(x) | |
| x = BatchNormalization( | |
| axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Conv2d_2a_3x3_BatchNorm" | |
| )(x) | |
| x = Activation("relu", name="Conv2d_2a_3x3_Activation")(x) | |
| x = Conv2D(64, 3, strides=1, padding="same", use_bias=False, name="Conv2d_2b_3x3")(x) | |
| x = BatchNormalization( | |
| axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Conv2d_2b_3x3_BatchNorm" | |
| )(x) | |
| x = Activation("relu", name="Conv2d_2b_3x3_Activation")(x) | |
| x = MaxPooling2D(3, strides=2, name="MaxPool_3a_3x3")(x) | |
| x = Conv2D(80, 1, strides=1, padding="valid", use_bias=False, name="Conv2d_3b_1x1")(x) | |
| x = BatchNormalization( | |
| axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Conv2d_3b_1x1_BatchNorm" | |
| )(x) | |
| x = Activation("relu", name="Conv2d_3b_1x1_Activation")(x) | |
| x = Conv2D(192, 3, strides=1, padding="valid", use_bias=False, name="Conv2d_4a_3x3")(x) | |
| x = BatchNormalization( | |
| axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Conv2d_4a_3x3_BatchNorm" | |
| )(x) | |
| x = Activation("relu", name="Conv2d_4a_3x3_Activation")(x) | |
| x = Conv2D(256, 3, strides=2, padding="valid", use_bias=False, name="Conv2d_4b_3x3")(x) | |
| x = BatchNormalization( | |
| axis=3, momentum=0.995, epsilon=0.001, scale=False, name="Conv2d_4b_3x3_BatchNorm" | |
| )(x) | |
| x = Activation("relu", name="Conv2d_4b_3x3_Activation")(x) | |
| # 5x Block35 (Inception-ResNet-A block): | |
| branch_0 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_1_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_1_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block35_1_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_1_Branch_1_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_1_Branch_1_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block35_1_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_1_Branch_1_Conv2d_0b_3x3" | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_1_Branch_1_Conv2d_0b_3x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block35_1_Branch_1_Conv2d_0b_3x3_Activation")(branch_1) | |
| branch_2 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_1_Branch_2_Conv2d_0a_1x1" | |
| )(x) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_1_Branch_2_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_1_Branch_2_Conv2d_0a_1x1_Activation")(branch_2) | |
| branch_2 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_1_Branch_2_Conv2d_0b_3x3" | |
| )(branch_2) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_1_Branch_2_Conv2d_0b_3x3_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_1_Branch_2_Conv2d_0b_3x3_Activation")(branch_2) | |
| branch_2 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_1_Branch_2_Conv2d_0c_3x3" | |
| )(branch_2) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_1_Branch_2_Conv2d_0c_3x3_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_1_Branch_2_Conv2d_0c_3x3_Activation")(branch_2) | |
| branches = [branch_0, branch_1, branch_2] | |
| mixed = Concatenate(axis=3, name="Block35_1_Concatenate")(branches) | |
| up = Conv2D(256, 1, strides=1, padding="same", use_bias=True, name="Block35_1_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.17})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block35_1_Activation")(x) | |
| branch_0 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_2_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_2_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block35_2_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_2_Branch_1_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_2_Branch_1_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block35_2_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_2_Branch_1_Conv2d_0b_3x3" | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_2_Branch_1_Conv2d_0b_3x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block35_2_Branch_1_Conv2d_0b_3x3_Activation")(branch_1) | |
| branch_2 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_2_Branch_2_Conv2d_0a_1x1" | |
| )(x) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_2_Branch_2_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_2_Branch_2_Conv2d_0a_1x1_Activation")(branch_2) | |
| branch_2 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_2_Branch_2_Conv2d_0b_3x3" | |
| )(branch_2) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_2_Branch_2_Conv2d_0b_3x3_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_2_Branch_2_Conv2d_0b_3x3_Activation")(branch_2) | |
| branch_2 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_2_Branch_2_Conv2d_0c_3x3" | |
| )(branch_2) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_2_Branch_2_Conv2d_0c_3x3_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_2_Branch_2_Conv2d_0c_3x3_Activation")(branch_2) | |
| branches = [branch_0, branch_1, branch_2] | |
| mixed = Concatenate(axis=3, name="Block35_2_Concatenate")(branches) | |
| up = Conv2D(256, 1, strides=1, padding="same", use_bias=True, name="Block35_2_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.17})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block35_2_Activation")(x) | |
| branch_0 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_3_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_3_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block35_3_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_3_Branch_1_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_3_Branch_1_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block35_3_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_3_Branch_1_Conv2d_0b_3x3" | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_3_Branch_1_Conv2d_0b_3x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block35_3_Branch_1_Conv2d_0b_3x3_Activation")(branch_1) | |
| branch_2 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_3_Branch_2_Conv2d_0a_1x1" | |
| )(x) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_3_Branch_2_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_3_Branch_2_Conv2d_0a_1x1_Activation")(branch_2) | |
| branch_2 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_3_Branch_2_Conv2d_0b_3x3" | |
| )(branch_2) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_3_Branch_2_Conv2d_0b_3x3_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_3_Branch_2_Conv2d_0b_3x3_Activation")(branch_2) | |
| branch_2 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_3_Branch_2_Conv2d_0c_3x3" | |
| )(branch_2) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_3_Branch_2_Conv2d_0c_3x3_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_3_Branch_2_Conv2d_0c_3x3_Activation")(branch_2) | |
| branches = [branch_0, branch_1, branch_2] | |
| mixed = Concatenate(axis=3, name="Block35_3_Concatenate")(branches) | |
| up = Conv2D(256, 1, strides=1, padding="same", use_bias=True, name="Block35_3_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.17})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block35_3_Activation")(x) | |
| branch_0 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_4_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_4_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block35_4_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_4_Branch_1_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_4_Branch_1_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block35_4_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_4_Branch_1_Conv2d_0b_3x3" | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_4_Branch_1_Conv2d_0b_3x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block35_4_Branch_1_Conv2d_0b_3x3_Activation")(branch_1) | |
| branch_2 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_4_Branch_2_Conv2d_0a_1x1" | |
| )(x) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_4_Branch_2_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_4_Branch_2_Conv2d_0a_1x1_Activation")(branch_2) | |
| branch_2 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_4_Branch_2_Conv2d_0b_3x3" | |
| )(branch_2) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_4_Branch_2_Conv2d_0b_3x3_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_4_Branch_2_Conv2d_0b_3x3_Activation")(branch_2) | |
| branch_2 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_4_Branch_2_Conv2d_0c_3x3" | |
| )(branch_2) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_4_Branch_2_Conv2d_0c_3x3_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_4_Branch_2_Conv2d_0c_3x3_Activation")(branch_2) | |
| branches = [branch_0, branch_1, branch_2] | |
| mixed = Concatenate(axis=3, name="Block35_4_Concatenate")(branches) | |
| up = Conv2D(256, 1, strides=1, padding="same", use_bias=True, name="Block35_4_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.17})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block35_4_Activation")(x) | |
| branch_0 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_5_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_5_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block35_5_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_5_Branch_1_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_5_Branch_1_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block35_5_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_5_Branch_1_Conv2d_0b_3x3" | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_5_Branch_1_Conv2d_0b_3x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block35_5_Branch_1_Conv2d_0b_3x3_Activation")(branch_1) | |
| branch_2 = Conv2D( | |
| 32, 1, strides=1, padding="same", use_bias=False, name="Block35_5_Branch_2_Conv2d_0a_1x1" | |
| )(x) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_5_Branch_2_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_5_Branch_2_Conv2d_0a_1x1_Activation")(branch_2) | |
| branch_2 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_5_Branch_2_Conv2d_0b_3x3" | |
| )(branch_2) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_5_Branch_2_Conv2d_0b_3x3_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_5_Branch_2_Conv2d_0b_3x3_Activation")(branch_2) | |
| branch_2 = Conv2D( | |
| 32, 3, strides=1, padding="same", use_bias=False, name="Block35_5_Branch_2_Conv2d_0c_3x3" | |
| )(branch_2) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block35_5_Branch_2_Conv2d_0c_3x3_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Block35_5_Branch_2_Conv2d_0c_3x3_Activation")(branch_2) | |
| branches = [branch_0, branch_1, branch_2] | |
| mixed = Concatenate(axis=3, name="Block35_5_Concatenate")(branches) | |
| up = Conv2D(256, 1, strides=1, padding="same", use_bias=True, name="Block35_5_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.17})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block35_5_Activation")(x) | |
| # Mixed 6a (Reduction-A block): | |
| branch_0 = Conv2D( | |
| 384, 3, strides=2, padding="valid", use_bias=False, name="Mixed_6a_Branch_0_Conv2d_1a_3x3" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Mixed_6a_Branch_0_Conv2d_1a_3x3_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Mixed_6a_Branch_0_Conv2d_1a_3x3_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 192, 1, strides=1, padding="same", use_bias=False, name="Mixed_6a_Branch_1_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Mixed_6a_Branch_1_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Mixed_6a_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 192, 3, strides=1, padding="same", use_bias=False, name="Mixed_6a_Branch_1_Conv2d_0b_3x3" | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Mixed_6a_Branch_1_Conv2d_0b_3x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Mixed_6a_Branch_1_Conv2d_0b_3x3_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 256, 3, strides=2, padding="valid", use_bias=False, name="Mixed_6a_Branch_1_Conv2d_1a_3x3" | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Mixed_6a_Branch_1_Conv2d_1a_3x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Mixed_6a_Branch_1_Conv2d_1a_3x3_Activation")(branch_1) | |
| branch_pool = MaxPooling2D( | |
| 3, strides=2, padding="valid", name="Mixed_6a_Branch_2_MaxPool_1a_3x3" | |
| )(x) | |
| branches = [branch_0, branch_1, branch_pool] | |
| x = Concatenate(axis=3, name="Mixed_6a")(branches) | |
| # 10x Block17 (Inception-ResNet-B block): | |
| branch_0 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_1_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_1_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block17_1_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_1_Branch_1_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_1_Branch_1_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_1_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [1, 7], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_1_Branch_1_Conv2d_0b_1x7", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_1_Branch_1_Conv2d_0b_1x7_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_1_Branch_1_Conv2d_0b_1x7_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [7, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_1_Branch_1_Conv2d_0c_7x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_1_Branch_1_Conv2d_0c_7x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_1_Branch_1_Conv2d_0c_7x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block17_1_Concatenate")(branches) | |
| up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_1_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block17_1_Activation")(x) | |
| branch_0 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_2_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_2_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block17_2_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_2_Branch_2_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_2_Branch_2_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_2_Branch_2_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [1, 7], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_2_Branch_2_Conv2d_0b_1x7", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_2_Branch_2_Conv2d_0b_1x7_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_2_Branch_2_Conv2d_0b_1x7_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [7, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_2_Branch_2_Conv2d_0c_7x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_2_Branch_2_Conv2d_0c_7x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_2_Branch_2_Conv2d_0c_7x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block17_2_Concatenate")(branches) | |
| up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_2_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block17_2_Activation")(x) | |
| branch_0 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_3_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_3_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block17_3_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_3_Branch_3_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_3_Branch_3_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_3_Branch_3_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [1, 7], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_3_Branch_3_Conv2d_0b_1x7", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_3_Branch_3_Conv2d_0b_1x7_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_3_Branch_3_Conv2d_0b_1x7_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [7, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_3_Branch_3_Conv2d_0c_7x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_3_Branch_3_Conv2d_0c_7x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_3_Branch_3_Conv2d_0c_7x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block17_3_Concatenate")(branches) | |
| up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_3_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block17_3_Activation")(x) | |
| branch_0 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_4_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_4_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block17_4_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_4_Branch_4_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_4_Branch_4_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_4_Branch_4_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [1, 7], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_4_Branch_4_Conv2d_0b_1x7", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_4_Branch_4_Conv2d_0b_1x7_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_4_Branch_4_Conv2d_0b_1x7_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [7, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_4_Branch_4_Conv2d_0c_7x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_4_Branch_4_Conv2d_0c_7x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_4_Branch_4_Conv2d_0c_7x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block17_4_Concatenate")(branches) | |
| up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_4_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block17_4_Activation")(x) | |
| branch_0 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_5_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_5_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block17_5_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_5_Branch_5_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_5_Branch_5_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_5_Branch_5_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [1, 7], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_5_Branch_5_Conv2d_0b_1x7", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_5_Branch_5_Conv2d_0b_1x7_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_5_Branch_5_Conv2d_0b_1x7_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [7, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_5_Branch_5_Conv2d_0c_7x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_5_Branch_5_Conv2d_0c_7x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_5_Branch_5_Conv2d_0c_7x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block17_5_Concatenate")(branches) | |
| up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_5_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block17_5_Activation")(x) | |
| branch_0 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_6_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_6_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block17_6_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_6_Branch_6_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_6_Branch_6_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_6_Branch_6_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [1, 7], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_6_Branch_6_Conv2d_0b_1x7", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_6_Branch_6_Conv2d_0b_1x7_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_6_Branch_6_Conv2d_0b_1x7_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [7, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_6_Branch_6_Conv2d_0c_7x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_6_Branch_6_Conv2d_0c_7x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_6_Branch_6_Conv2d_0c_7x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block17_6_Concatenate")(branches) | |
| up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_6_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block17_6_Activation")(x) | |
| branch_0 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_7_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_7_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block17_7_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_7_Branch_7_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_7_Branch_7_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_7_Branch_7_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [1, 7], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_7_Branch_7_Conv2d_0b_1x7", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_7_Branch_7_Conv2d_0b_1x7_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_7_Branch_7_Conv2d_0b_1x7_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [7, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_7_Branch_7_Conv2d_0c_7x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_7_Branch_7_Conv2d_0c_7x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_7_Branch_7_Conv2d_0c_7x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block17_7_Concatenate")(branches) | |
| up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_7_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block17_7_Activation")(x) | |
| branch_0 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_8_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_8_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block17_8_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_8_Branch_8_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_8_Branch_8_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_8_Branch_8_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [1, 7], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_8_Branch_8_Conv2d_0b_1x7", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_8_Branch_8_Conv2d_0b_1x7_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_8_Branch_8_Conv2d_0b_1x7_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [7, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_8_Branch_8_Conv2d_0c_7x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_8_Branch_8_Conv2d_0c_7x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_8_Branch_8_Conv2d_0c_7x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block17_8_Concatenate")(branches) | |
| up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_8_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block17_8_Activation")(x) | |
| branch_0 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_9_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_9_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block17_9_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_9_Branch_9_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_9_Branch_9_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_9_Branch_9_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [1, 7], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_9_Branch_9_Conv2d_0b_1x7", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_9_Branch_9_Conv2d_0b_1x7_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_9_Branch_9_Conv2d_0b_1x7_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [7, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_9_Branch_9_Conv2d_0c_7x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_9_Branch_9_Conv2d_0c_7x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_9_Branch_9_Conv2d_0c_7x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block17_9_Concatenate")(branches) | |
| up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_9_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block17_9_Activation")(x) | |
| branch_0 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_10_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_10_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block17_10_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 128, 1, strides=1, padding="same", use_bias=False, name="Block17_10_Branch_10_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_10_Branch_10_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_10_Branch_10_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [1, 7], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_10_Branch_10_Conv2d_0b_1x7", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_10_Branch_10_Conv2d_0b_1x7_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_10_Branch_10_Conv2d_0b_1x7_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 128, | |
| [7, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block17_10_Branch_10_Conv2d_0c_7x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block17_10_Branch_10_Conv2d_0c_7x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block17_10_Branch_10_Conv2d_0c_7x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block17_10_Concatenate")(branches) | |
| up = Conv2D(896, 1, strides=1, padding="same", use_bias=True, name="Block17_10_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.1})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block17_10_Activation")(x) | |
| # Mixed 7a (Reduction-B block): 8 x 8 x 2080 | |
| branch_0 = Conv2D( | |
| 256, 1, strides=1, padding="same", use_bias=False, name="Mixed_7a_Branch_0_Conv2d_0a_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Mixed_7a_Branch_0_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Mixed_7a_Branch_0_Conv2d_0a_1x1_Activation")(branch_0) | |
| branch_0 = Conv2D( | |
| 384, 3, strides=2, padding="valid", use_bias=False, name="Mixed_7a_Branch_0_Conv2d_1a_3x3" | |
| )(branch_0) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Mixed_7a_Branch_0_Conv2d_1a_3x3_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Mixed_7a_Branch_0_Conv2d_1a_3x3_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 256, 1, strides=1, padding="same", use_bias=False, name="Mixed_7a_Branch_1_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Mixed_7a_Branch_1_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Mixed_7a_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 256, 3, strides=2, padding="valid", use_bias=False, name="Mixed_7a_Branch_1_Conv2d_1a_3x3" | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Mixed_7a_Branch_1_Conv2d_1a_3x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Mixed_7a_Branch_1_Conv2d_1a_3x3_Activation")(branch_1) | |
| branch_2 = Conv2D( | |
| 256, 1, strides=1, padding="same", use_bias=False, name="Mixed_7a_Branch_2_Conv2d_0a_1x1" | |
| )(x) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Mixed_7a_Branch_2_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Mixed_7a_Branch_2_Conv2d_0a_1x1_Activation")(branch_2) | |
| branch_2 = Conv2D( | |
| 256, 3, strides=1, padding="same", use_bias=False, name="Mixed_7a_Branch_2_Conv2d_0b_3x3" | |
| )(branch_2) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Mixed_7a_Branch_2_Conv2d_0b_3x3_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Mixed_7a_Branch_2_Conv2d_0b_3x3_Activation")(branch_2) | |
| branch_2 = Conv2D( | |
| 256, 3, strides=2, padding="valid", use_bias=False, name="Mixed_7a_Branch_2_Conv2d_1a_3x3" | |
| )(branch_2) | |
| branch_2 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Mixed_7a_Branch_2_Conv2d_1a_3x3_BatchNorm", | |
| )(branch_2) | |
| branch_2 = Activation("relu", name="Mixed_7a_Branch_2_Conv2d_1a_3x3_Activation")(branch_2) | |
| branch_pool = MaxPooling2D( | |
| 3, strides=2, padding="valid", name="Mixed_7a_Branch_3_MaxPool_1a_3x3" | |
| )(x) | |
| branches = [branch_0, branch_1, branch_2, branch_pool] | |
| x = Concatenate(axis=3, name="Mixed_7a")(branches) | |
| # 5x Block8 (Inception-ResNet-C block): | |
| branch_0 = Conv2D( | |
| 192, 1, strides=1, padding="same", use_bias=False, name="Block8_1_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_1_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block8_1_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 192, 1, strides=1, padding="same", use_bias=False, name="Block8_1_Branch_1_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_1_Branch_1_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_1_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 192, | |
| [1, 3], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block8_1_Branch_1_Conv2d_0b_1x3", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_1_Branch_1_Conv2d_0b_1x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_1_Branch_1_Conv2d_0b_1x3_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 192, | |
| [3, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block8_1_Branch_1_Conv2d_0c_3x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_1_Branch_1_Conv2d_0c_3x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_1_Branch_1_Conv2d_0c_3x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block8_1_Concatenate")(branches) | |
| up = Conv2D(1792, 1, strides=1, padding="same", use_bias=True, name="Block8_1_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.2})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block8_1_Activation")(x) | |
| branch_0 = Conv2D( | |
| 192, 1, strides=1, padding="same", use_bias=False, name="Block8_2_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_2_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block8_2_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 192, 1, strides=1, padding="same", use_bias=False, name="Block8_2_Branch_2_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_2_Branch_2_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_2_Branch_2_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 192, | |
| [1, 3], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block8_2_Branch_2_Conv2d_0b_1x3", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_2_Branch_2_Conv2d_0b_1x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_2_Branch_2_Conv2d_0b_1x3_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 192, | |
| [3, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block8_2_Branch_2_Conv2d_0c_3x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_2_Branch_2_Conv2d_0c_3x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_2_Branch_2_Conv2d_0c_3x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block8_2_Concatenate")(branches) | |
| up = Conv2D(1792, 1, strides=1, padding="same", use_bias=True, name="Block8_2_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.2})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block8_2_Activation")(x) | |
| branch_0 = Conv2D( | |
| 192, 1, strides=1, padding="same", use_bias=False, name="Block8_3_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_3_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block8_3_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 192, 1, strides=1, padding="same", use_bias=False, name="Block8_3_Branch_3_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_3_Branch_3_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_3_Branch_3_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 192, | |
| [1, 3], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block8_3_Branch_3_Conv2d_0b_1x3", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_3_Branch_3_Conv2d_0b_1x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_3_Branch_3_Conv2d_0b_1x3_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 192, | |
| [3, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block8_3_Branch_3_Conv2d_0c_3x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_3_Branch_3_Conv2d_0c_3x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_3_Branch_3_Conv2d_0c_3x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block8_3_Concatenate")(branches) | |
| up = Conv2D(1792, 1, strides=1, padding="same", use_bias=True, name="Block8_3_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.2})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block8_3_Activation")(x) | |
| branch_0 = Conv2D( | |
| 192, 1, strides=1, padding="same", use_bias=False, name="Block8_4_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_4_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block8_4_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 192, 1, strides=1, padding="same", use_bias=False, name="Block8_4_Branch_4_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_4_Branch_4_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_4_Branch_4_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 192, | |
| [1, 3], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block8_4_Branch_4_Conv2d_0b_1x3", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_4_Branch_4_Conv2d_0b_1x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_4_Branch_4_Conv2d_0b_1x3_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 192, | |
| [3, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block8_4_Branch_4_Conv2d_0c_3x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_4_Branch_4_Conv2d_0c_3x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_4_Branch_4_Conv2d_0c_3x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block8_4_Concatenate")(branches) | |
| up = Conv2D(1792, 1, strides=1, padding="same", use_bias=True, name="Block8_4_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.2})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block8_4_Activation")(x) | |
| branch_0 = Conv2D( | |
| 192, 1, strides=1, padding="same", use_bias=False, name="Block8_5_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_5_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block8_5_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 192, 1, strides=1, padding="same", use_bias=False, name="Block8_5_Branch_5_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_5_Branch_5_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_5_Branch_5_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 192, | |
| [1, 3], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block8_5_Branch_5_Conv2d_0b_1x3", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_5_Branch_5_Conv2d_0b_1x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_5_Branch_5_Conv2d_0b_1x3_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 192, | |
| [3, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block8_5_Branch_5_Conv2d_0c_3x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_5_Branch_5_Conv2d_0c_3x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_5_Branch_5_Conv2d_0c_3x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block8_5_Concatenate")(branches) | |
| up = Conv2D(1792, 1, strides=1, padding="same", use_bias=True, name="Block8_5_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 0.2})(up) | |
| x = add([x, up]) | |
| x = Activation("relu", name="Block8_5_Activation")(x) | |
| branch_0 = Conv2D( | |
| 192, 1, strides=1, padding="same", use_bias=False, name="Block8_6_Branch_0_Conv2d_1x1" | |
| )(x) | |
| branch_0 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_6_Branch_0_Conv2d_1x1_BatchNorm", | |
| )(branch_0) | |
| branch_0 = Activation("relu", name="Block8_6_Branch_0_Conv2d_1x1_Activation")(branch_0) | |
| branch_1 = Conv2D( | |
| 192, 1, strides=1, padding="same", use_bias=False, name="Block8_6_Branch_1_Conv2d_0a_1x1" | |
| )(x) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_6_Branch_1_Conv2d_0a_1x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_6_Branch_1_Conv2d_0a_1x1_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 192, | |
| [1, 3], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block8_6_Branch_1_Conv2d_0b_1x3", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_6_Branch_1_Conv2d_0b_1x3_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_6_Branch_1_Conv2d_0b_1x3_Activation")(branch_1) | |
| branch_1 = Conv2D( | |
| 192, | |
| [3, 1], | |
| strides=1, | |
| padding="same", | |
| use_bias=False, | |
| name="Block8_6_Branch_1_Conv2d_0c_3x1", | |
| )(branch_1) | |
| branch_1 = BatchNormalization( | |
| axis=3, | |
| momentum=0.995, | |
| epsilon=0.001, | |
| scale=False, | |
| name="Block8_6_Branch_1_Conv2d_0c_3x1_BatchNorm", | |
| )(branch_1) | |
| branch_1 = Activation("relu", name="Block8_6_Branch_1_Conv2d_0c_3x1_Activation")(branch_1) | |
| branches = [branch_0, branch_1] | |
| mixed = Concatenate(axis=3, name="Block8_6_Concatenate")(branches) | |
| up = Conv2D(1792, 1, strides=1, padding="same", use_bias=True, name="Block8_6_Conv2d_1x1")( | |
| mixed | |
| ) | |
| up = Lambda(scaling, output_shape=K.int_shape(up)[1:], arguments={"scale": 1})(up) | |
| x = add([x, up]) | |
| # Classification block | |
| x = GlobalAveragePooling2D(name="AvgPool")(x) | |
| x = Dropout(1.0 - 0.8, name="Dropout")(x) | |
| # Bottleneck | |
| x = Dense(dimension, use_bias=False, name="Bottleneck")(x) | |
| x = BatchNormalization(momentum=0.995, epsilon=0.001, scale=False, name="Bottleneck_BatchNorm")( | |
| x | |
| ) | |
| # Create model | |
| model = Model(inputs, x, name="inception_resnet_v1") | |
| return model | |
| def load_facenet128d_model( | |
| url="https://github.com/serengil/deepface_models/releases/download/v1.0/facenet_weights.h5", | |
| ) -> Model: | |
| """ | |
| Construct FaceNet-128d model, download weights and then load weights | |
| Args: | |
| dimension (int): construct FaceNet-128d or FaceNet-512d models | |
| Returns: | |
| model (Model) | |
| """ | |
| model = InceptionResNetV1() | |
| # ----------------------------------- | |
| home = folder_utils.get_deepface_home() | |
| if os.path.isfile(home + "/.deepface/weights/facenet_weights.h5") != True: | |
| logger.info("facenet_weights.h5 will be downloaded...") | |
| output = home + "/.deepface/weights/facenet_weights.h5" | |
| gdown.download(url, output, quiet=False) | |
| # ----------------------------------- | |
| model.load_weights(home + "/.deepface/weights/facenet_weights.h5") | |
| # ----------------------------------- | |
| return model | |
| def load_facenet512d_model( | |
| url="https://github.com/serengil/deepface_models/releases/download/v1.0/facenet512_weights.h5", | |
| ) -> Model: | |
| """ | |
| Construct FaceNet-512d model, download its weights and load | |
| Returns: | |
| model (Model) | |
| """ | |
| model = InceptionResNetV1(dimension=512) | |
| # ------------------------- | |
| home = folder_utils.get_deepface_home() | |
| if os.path.isfile(home + "/.deepface/weights/facenet512_weights.h5") != True: | |
| logger.info("facenet512_weights.h5 will be downloaded...") | |
| output = home + "/.deepface/weights/facenet512_weights.h5" | |
| gdown.download(url, output, quiet=False) | |
| # ------------------------- | |
| model.load_weights(home + "/.deepface/weights/facenet512_weights.h5") | |
| # ------------------------- | |
| return model | |