Spaces:
Runtime error
Runtime error
| import os | |
| import gdown | |
| import tensorflow as tf | |
| from deepface.commons import package_utils, folder_utils | |
| from deepface.models.FacialRecognition import FacialRecognition | |
| from deepface.commons import logger as log | |
| logger = log.get_singletonish_logger() | |
| tf_version = package_utils.get_tf_major_version() | |
| if tf_version == 1: | |
| from keras.models import Model | |
| from keras.layers import Conv2D, ZeroPadding2D, Input, concatenate | |
| from keras.layers import Dense, Activation, Lambda, Flatten, BatchNormalization | |
| from keras.layers import MaxPooling2D, AveragePooling2D | |
| from keras import backend as K | |
| else: | |
| from tensorflow.keras.models import Model | |
| from tensorflow.keras.layers import Conv2D, ZeroPadding2D, Input, concatenate | |
| from tensorflow.keras.layers import Dense, Activation, Lambda, Flatten, BatchNormalization | |
| from tensorflow.keras.layers import MaxPooling2D, AveragePooling2D | |
| from tensorflow.keras import backend as K | |
| # pylint: disable=unnecessary-lambda | |
| # --------------------------------------- | |
| # pylint: disable=too-few-public-methods | |
| class OpenFaceClient(FacialRecognition): | |
| """ | |
| OpenFace model class | |
| """ | |
| def __init__(self): | |
| self.model = load_model() | |
| self.model_name = "OpenFace" | |
| self.input_shape = (96, 96) | |
| self.output_shape = 128 | |
| def load_model( | |
| url="https://github.com/serengil/deepface_models/releases/download/v1.0/openface_weights.h5", | |
| ) -> Model: | |
| """ | |
| Consturct OpenFace model, download its weights and load | |
| Returns: | |
| model (Model) | |
| """ | |
| myInput = Input(shape=(96, 96, 3)) | |
| x = ZeroPadding2D(padding=(3, 3), input_shape=(96, 96, 3))(myInput) | |
| x = Conv2D(64, (7, 7), strides=(2, 2), name="conv1")(x) | |
| x = BatchNormalization(axis=3, epsilon=0.00001, name="bn1")(x) | |
| x = Activation("relu")(x) | |
| x = ZeroPadding2D(padding=(1, 1))(x) | |
| x = MaxPooling2D(pool_size=3, strides=2)(x) | |
| x = Lambda(lambda x: tf.nn.lrn(x, alpha=1e-4, beta=0.75), name="lrn_1")(x) | |
| x = Conv2D(64, (1, 1), name="conv2")(x) | |
| x = BatchNormalization(axis=3, epsilon=0.00001, name="bn2")(x) | |
| x = Activation("relu")(x) | |
| x = ZeroPadding2D(padding=(1, 1))(x) | |
| x = Conv2D(192, (3, 3), name="conv3")(x) | |
| x = BatchNormalization(axis=3, epsilon=0.00001, name="bn3")(x) | |
| x = Activation("relu")(x) | |
| x = Lambda(lambda x: tf.nn.lrn(x, alpha=1e-4, beta=0.75), name="lrn_2")(x) # x is equal added | |
| x = ZeroPadding2D(padding=(1, 1))(x) | |
| x = MaxPooling2D(pool_size=3, strides=2)(x) | |
| # Inception3a | |
| inception_3a_3x3 = Conv2D(96, (1, 1), name="inception_3a_3x3_conv1")(x) | |
| inception_3a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3a_3x3_bn1")( | |
| inception_3a_3x3 | |
| ) | |
| inception_3a_3x3 = Activation("relu")(inception_3a_3x3) | |
| inception_3a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3a_3x3) | |
| inception_3a_3x3 = Conv2D(128, (3, 3), name="inception_3a_3x3_conv2")(inception_3a_3x3) | |
| inception_3a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3a_3x3_bn2")( | |
| inception_3a_3x3 | |
| ) | |
| inception_3a_3x3 = Activation("relu")(inception_3a_3x3) | |
| inception_3a_5x5 = Conv2D(16, (1, 1), name="inception_3a_5x5_conv1")(x) | |
| inception_3a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3a_5x5_bn1")( | |
| inception_3a_5x5 | |
| ) | |
| inception_3a_5x5 = Activation("relu")(inception_3a_5x5) | |
| inception_3a_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3a_5x5) | |
| inception_3a_5x5 = Conv2D(32, (5, 5), name="inception_3a_5x5_conv2")(inception_3a_5x5) | |
| inception_3a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3a_5x5_bn2")( | |
| inception_3a_5x5 | |
| ) | |
| inception_3a_5x5 = Activation("relu")(inception_3a_5x5) | |
| inception_3a_pool = MaxPooling2D(pool_size=3, strides=2)(x) | |
| inception_3a_pool = Conv2D(32, (1, 1), name="inception_3a_pool_conv")(inception_3a_pool) | |
| inception_3a_pool = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3a_pool_bn")( | |
| inception_3a_pool | |
| ) | |
| inception_3a_pool = Activation("relu")(inception_3a_pool) | |
| inception_3a_pool = ZeroPadding2D(padding=((3, 4), (3, 4)))(inception_3a_pool) | |
| inception_3a_1x1 = Conv2D(64, (1, 1), name="inception_3a_1x1_conv")(x) | |
| inception_3a_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3a_1x1_bn")( | |
| inception_3a_1x1 | |
| ) | |
| inception_3a_1x1 = Activation("relu")(inception_3a_1x1) | |
| inception_3a = concatenate( | |
| [inception_3a_3x3, inception_3a_5x5, inception_3a_pool, inception_3a_1x1], axis=3 | |
| ) | |
| # Inception3b | |
| inception_3b_3x3 = Conv2D(96, (1, 1), name="inception_3b_3x3_conv1")(inception_3a) | |
| inception_3b_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3b_3x3_bn1")( | |
| inception_3b_3x3 | |
| ) | |
| inception_3b_3x3 = Activation("relu")(inception_3b_3x3) | |
| inception_3b_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3b_3x3) | |
| inception_3b_3x3 = Conv2D(128, (3, 3), name="inception_3b_3x3_conv2")(inception_3b_3x3) | |
| inception_3b_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3b_3x3_bn2")( | |
| inception_3b_3x3 | |
| ) | |
| inception_3b_3x3 = Activation("relu")(inception_3b_3x3) | |
| inception_3b_5x5 = Conv2D(32, (1, 1), name="inception_3b_5x5_conv1")(inception_3a) | |
| inception_3b_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3b_5x5_bn1")( | |
| inception_3b_5x5 | |
| ) | |
| inception_3b_5x5 = Activation("relu")(inception_3b_5x5) | |
| inception_3b_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3b_5x5) | |
| inception_3b_5x5 = Conv2D(64, (5, 5), name="inception_3b_5x5_conv2")(inception_3b_5x5) | |
| inception_3b_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3b_5x5_bn2")( | |
| inception_3b_5x5 | |
| ) | |
| inception_3b_5x5 = Activation("relu")(inception_3b_5x5) | |
| inception_3b_pool = Lambda(lambda x: x**2, name="power2_3b")(inception_3a) | |
| inception_3b_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_3b_pool) | |
| inception_3b_pool = Lambda(lambda x: x * 9, name="mult9_3b")(inception_3b_pool) | |
| inception_3b_pool = Lambda(lambda x: K.sqrt(x), name="sqrt_3b")(inception_3b_pool) | |
| inception_3b_pool = Conv2D(64, (1, 1), name="inception_3b_pool_conv")(inception_3b_pool) | |
| inception_3b_pool = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3b_pool_bn")( | |
| inception_3b_pool | |
| ) | |
| inception_3b_pool = Activation("relu")(inception_3b_pool) | |
| inception_3b_pool = ZeroPadding2D(padding=(4, 4))(inception_3b_pool) | |
| inception_3b_1x1 = Conv2D(64, (1, 1), name="inception_3b_1x1_conv")(inception_3a) | |
| inception_3b_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3b_1x1_bn")( | |
| inception_3b_1x1 | |
| ) | |
| inception_3b_1x1 = Activation("relu")(inception_3b_1x1) | |
| inception_3b = concatenate( | |
| [inception_3b_3x3, inception_3b_5x5, inception_3b_pool, inception_3b_1x1], axis=3 | |
| ) | |
| # Inception3c | |
| inception_3c_3x3 = Conv2D(128, (1, 1), strides=(1, 1), name="inception_3c_3x3_conv1")( | |
| inception_3b | |
| ) | |
| inception_3c_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3c_3x3_bn1")( | |
| inception_3c_3x3 | |
| ) | |
| inception_3c_3x3 = Activation("relu")(inception_3c_3x3) | |
| inception_3c_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3c_3x3) | |
| inception_3c_3x3 = Conv2D(256, (3, 3), strides=(2, 2), name="inception_3c_3x3_conv" + "2")( | |
| inception_3c_3x3 | |
| ) | |
| inception_3c_3x3 = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_3c_3x3_bn" + "2" | |
| )(inception_3c_3x3) | |
| inception_3c_3x3 = Activation("relu")(inception_3c_3x3) | |
| inception_3c_5x5 = Conv2D(32, (1, 1), strides=(1, 1), name="inception_3c_5x5_conv1")( | |
| inception_3b | |
| ) | |
| inception_3c_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_3c_5x5_bn1")( | |
| inception_3c_5x5 | |
| ) | |
| inception_3c_5x5 = Activation("relu")(inception_3c_5x5) | |
| inception_3c_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3c_5x5) | |
| inception_3c_5x5 = Conv2D(64, (5, 5), strides=(2, 2), name="inception_3c_5x5_conv" + "2")( | |
| inception_3c_5x5 | |
| ) | |
| inception_3c_5x5 = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_3c_5x5_bn" + "2" | |
| )(inception_3c_5x5) | |
| inception_3c_5x5 = Activation("relu")(inception_3c_5x5) | |
| inception_3c_pool = MaxPooling2D(pool_size=3, strides=2)(inception_3b) | |
| inception_3c_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_3c_pool) | |
| inception_3c = concatenate([inception_3c_3x3, inception_3c_5x5, inception_3c_pool], axis=3) | |
| # inception 4a | |
| inception_4a_3x3 = Conv2D(96, (1, 1), strides=(1, 1), name="inception_4a_3x3_conv" + "1")( | |
| inception_3c | |
| ) | |
| inception_4a_3x3 = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_4a_3x3_bn" + "1" | |
| )(inception_4a_3x3) | |
| inception_4a_3x3 = Activation("relu")(inception_4a_3x3) | |
| inception_4a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_4a_3x3) | |
| inception_4a_3x3 = Conv2D(192, (3, 3), strides=(1, 1), name="inception_4a_3x3_conv" + "2")( | |
| inception_4a_3x3 | |
| ) | |
| inception_4a_3x3 = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_4a_3x3_bn" + "2" | |
| )(inception_4a_3x3) | |
| inception_4a_3x3 = Activation("relu")(inception_4a_3x3) | |
| inception_4a_5x5 = Conv2D(32, (1, 1), strides=(1, 1), name="inception_4a_5x5_conv1")( | |
| inception_3c | |
| ) | |
| inception_4a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_4a_5x5_bn1")( | |
| inception_4a_5x5 | |
| ) | |
| inception_4a_5x5 = Activation("relu")(inception_4a_5x5) | |
| inception_4a_5x5 = ZeroPadding2D(padding=(2, 2))(inception_4a_5x5) | |
| inception_4a_5x5 = Conv2D(64, (5, 5), strides=(1, 1), name="inception_4a_5x5_conv" + "2")( | |
| inception_4a_5x5 | |
| ) | |
| inception_4a_5x5 = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_4a_5x5_bn" + "2" | |
| )(inception_4a_5x5) | |
| inception_4a_5x5 = Activation("relu")(inception_4a_5x5) | |
| inception_4a_pool = Lambda(lambda x: x**2, name="power2_4a")(inception_3c) | |
| inception_4a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_4a_pool) | |
| inception_4a_pool = Lambda(lambda x: x * 9, name="mult9_4a")(inception_4a_pool) | |
| inception_4a_pool = Lambda(lambda x: K.sqrt(x), name="sqrt_4a")(inception_4a_pool) | |
| inception_4a_pool = Conv2D(128, (1, 1), strides=(1, 1), name="inception_4a_pool_conv" + "")( | |
| inception_4a_pool | |
| ) | |
| inception_4a_pool = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_4a_pool_bn" + "" | |
| )(inception_4a_pool) | |
| inception_4a_pool = Activation("relu")(inception_4a_pool) | |
| inception_4a_pool = ZeroPadding2D(padding=(2, 2))(inception_4a_pool) | |
| inception_4a_1x1 = Conv2D(256, (1, 1), strides=(1, 1), name="inception_4a_1x1_conv" + "")( | |
| inception_3c | |
| ) | |
| inception_4a_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_4a_1x1_bn" + "")( | |
| inception_4a_1x1 | |
| ) | |
| inception_4a_1x1 = Activation("relu")(inception_4a_1x1) | |
| inception_4a = concatenate( | |
| [inception_4a_3x3, inception_4a_5x5, inception_4a_pool, inception_4a_1x1], axis=3 | |
| ) | |
| # inception4e | |
| inception_4e_3x3 = Conv2D(160, (1, 1), strides=(1, 1), name="inception_4e_3x3_conv" + "1")( | |
| inception_4a | |
| ) | |
| inception_4e_3x3 = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_4e_3x3_bn" + "1" | |
| )(inception_4e_3x3) | |
| inception_4e_3x3 = Activation("relu")(inception_4e_3x3) | |
| inception_4e_3x3 = ZeroPadding2D(padding=(1, 1))(inception_4e_3x3) | |
| inception_4e_3x3 = Conv2D(256, (3, 3), strides=(2, 2), name="inception_4e_3x3_conv" + "2")( | |
| inception_4e_3x3 | |
| ) | |
| inception_4e_3x3 = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_4e_3x3_bn" + "2" | |
| )(inception_4e_3x3) | |
| inception_4e_3x3 = Activation("relu")(inception_4e_3x3) | |
| inception_4e_5x5 = Conv2D(64, (1, 1), strides=(1, 1), name="inception_4e_5x5_conv" + "1")( | |
| inception_4a | |
| ) | |
| inception_4e_5x5 = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_4e_5x5_bn" + "1" | |
| )(inception_4e_5x5) | |
| inception_4e_5x5 = Activation("relu")(inception_4e_5x5) | |
| inception_4e_5x5 = ZeroPadding2D(padding=(2, 2))(inception_4e_5x5) | |
| inception_4e_5x5 = Conv2D(128, (5, 5), strides=(2, 2), name="inception_4e_5x5_conv" + "2")( | |
| inception_4e_5x5 | |
| ) | |
| inception_4e_5x5 = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_4e_5x5_bn" + "2" | |
| )(inception_4e_5x5) | |
| inception_4e_5x5 = Activation("relu")(inception_4e_5x5) | |
| inception_4e_pool = MaxPooling2D(pool_size=3, strides=2)(inception_4a) | |
| inception_4e_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_4e_pool) | |
| inception_4e = concatenate([inception_4e_3x3, inception_4e_5x5, inception_4e_pool], axis=3) | |
| # inception5a | |
| inception_5a_3x3 = Conv2D(96, (1, 1), strides=(1, 1), name="inception_5a_3x3_conv" + "1")( | |
| inception_4e | |
| ) | |
| inception_5a_3x3 = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_5a_3x3_bn" + "1" | |
| )(inception_5a_3x3) | |
| inception_5a_3x3 = Activation("relu")(inception_5a_3x3) | |
| inception_5a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_5a_3x3) | |
| inception_5a_3x3 = Conv2D(384, (3, 3), strides=(1, 1), name="inception_5a_3x3_conv" + "2")( | |
| inception_5a_3x3 | |
| ) | |
| inception_5a_3x3 = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_5a_3x3_bn" + "2" | |
| )(inception_5a_3x3) | |
| inception_5a_3x3 = Activation("relu")(inception_5a_3x3) | |
| inception_5a_pool = Lambda(lambda x: x**2, name="power2_5a")(inception_4e) | |
| inception_5a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_5a_pool) | |
| inception_5a_pool = Lambda(lambda x: x * 9, name="mult9_5a")(inception_5a_pool) | |
| inception_5a_pool = Lambda(lambda x: K.sqrt(x), name="sqrt_5a")(inception_5a_pool) | |
| inception_5a_pool = Conv2D(96, (1, 1), strides=(1, 1), name="inception_5a_pool_conv" + "")( | |
| inception_5a_pool | |
| ) | |
| inception_5a_pool = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_5a_pool_bn" + "" | |
| )(inception_5a_pool) | |
| inception_5a_pool = Activation("relu")(inception_5a_pool) | |
| inception_5a_pool = ZeroPadding2D(padding=(1, 1))(inception_5a_pool) | |
| inception_5a_1x1 = Conv2D(256, (1, 1), strides=(1, 1), name="inception_5a_1x1_conv" + "")( | |
| inception_4e | |
| ) | |
| inception_5a_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_5a_1x1_bn" + "")( | |
| inception_5a_1x1 | |
| ) | |
| inception_5a_1x1 = Activation("relu")(inception_5a_1x1) | |
| inception_5a = concatenate([inception_5a_3x3, inception_5a_pool, inception_5a_1x1], axis=3) | |
| # inception_5b | |
| inception_5b_3x3 = Conv2D(96, (1, 1), strides=(1, 1), name="inception_5b_3x3_conv" + "1")( | |
| inception_5a | |
| ) | |
| inception_5b_3x3 = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_5b_3x3_bn" + "1" | |
| )(inception_5b_3x3) | |
| inception_5b_3x3 = Activation("relu")(inception_5b_3x3) | |
| inception_5b_3x3 = ZeroPadding2D(padding=(1, 1))(inception_5b_3x3) | |
| inception_5b_3x3 = Conv2D(384, (3, 3), strides=(1, 1), name="inception_5b_3x3_conv" + "2")( | |
| inception_5b_3x3 | |
| ) | |
| inception_5b_3x3 = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_5b_3x3_bn" + "2" | |
| )(inception_5b_3x3) | |
| inception_5b_3x3 = Activation("relu")(inception_5b_3x3) | |
| inception_5b_pool = MaxPooling2D(pool_size=3, strides=2)(inception_5a) | |
| inception_5b_pool = Conv2D(96, (1, 1), strides=(1, 1), name="inception_5b_pool_conv" + "")( | |
| inception_5b_pool | |
| ) | |
| inception_5b_pool = BatchNormalization( | |
| axis=3, epsilon=0.00001, name="inception_5b_pool_bn" + "" | |
| )(inception_5b_pool) | |
| inception_5b_pool = Activation("relu")(inception_5b_pool) | |
| inception_5b_pool = ZeroPadding2D(padding=(1, 1))(inception_5b_pool) | |
| inception_5b_1x1 = Conv2D(256, (1, 1), strides=(1, 1), name="inception_5b_1x1_conv" + "")( | |
| inception_5a | |
| ) | |
| inception_5b_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name="inception_5b_1x1_bn" + "")( | |
| inception_5b_1x1 | |
| ) | |
| inception_5b_1x1 = Activation("relu")(inception_5b_1x1) | |
| inception_5b = concatenate([inception_5b_3x3, inception_5b_pool, inception_5b_1x1], axis=3) | |
| av_pool = AveragePooling2D(pool_size=(3, 3), strides=(1, 1))(inception_5b) | |
| reshape_layer = Flatten()(av_pool) | |
| dense_layer = Dense(128, name="dense_layer")(reshape_layer) | |
| norm_layer = Lambda(lambda x: K.l2_normalize(x, axis=1), name="norm_layer")(dense_layer) | |
| # Final Model | |
| model = Model(inputs=[myInput], outputs=norm_layer) | |
| # ----------------------------------- | |
| home = folder_utils.get_deepface_home() | |
| if os.path.isfile(home + "/.deepface/weights/openface_weights.h5") != True: | |
| logger.info("openface_weights.h5 will be downloaded...") | |
| output = home + "/.deepface/weights/openface_weights.h5" | |
| gdown.download(url, output, quiet=False) | |
| # ----------------------------------- | |
| model.load_weights(home + "/.deepface/weights/openface_weights.h5") | |
| # ----------------------------------- | |
| return model | |