File size: 12,335 Bytes
b4c9392 e1c9f5a b4c9392 e1c9f5a b4c9392 e1c9f5a b4c9392 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
"""
Axion: SAR-to-Optical Translation - HuggingFace Space
Fixed for ZeroGPU with lazy loading
"""
import os
import numpy as np
from PIL import Image, ImageEnhance
import gradio as gr
import tempfile
import time
print("[Axion] Starting app...")
# ZeroGPU support
try:
import spaces
GPU_AVAILABLE = True
print("[Axion] ZeroGPU available")
except ImportError:
GPU_AVAILABLE = False
spaces = None
print("[Axion] Running without ZeroGPU")
# Lazy imports for heavy modules
_torch = None
_model_modules = None
def get_torch():
global _torch
if _torch is None:
print("[Axion] Importing torch...")
import torch
_torch = torch
print(f"[Axion] PyTorch {torch.__version__} loaded")
return _torch
def get_model_modules():
global _model_modules
if _model_modules is None:
print("[Axion] Importing model modules...")
from unet import UNet
from diffusion import GaussianDiffusion
_model_modules = (UNet, GaussianDiffusion)
print("[Axion] Model modules loaded")
return _model_modules
def load_sar_image(filepath):
"""Load SAR image from various formats."""
try:
import rasterio
with rasterio.open(filepath) as src:
data = src.read(1)
if data.dtype in [np.float32, np.float64]:
valid = data[np.isfinite(data)]
if len(valid) > 0:
p2, p98 = np.percentile(valid, [2, 98])
data = np.clip(data, p2, p98)
data = ((data - p2) / (p98 - p2 + 1e-8) * 255).astype(np.uint8)
elif data.dtype == np.uint16:
p2, p98 = np.percentile(data, [2, 98])
data = np.clip(data, p2, p98)
data = ((data - p2) / (p98 - p2 + 1e-8) * 255).astype(np.uint8)
return Image.fromarray(data).convert('RGB')
except:
pass
return Image.open(filepath).convert('RGB')
def create_blend_weights(tile_size, overlap):
"""Create smooth blending weights for seamless output."""
ramp = np.linspace(0, 1, overlap)
weight = np.ones((tile_size, tile_size))
weight[:overlap, :] *= ramp[:, np.newaxis]
weight[-overlap:, :] *= ramp[::-1, np.newaxis]
weight[:, :overlap] *= ramp[np.newaxis, :]
weight[:, -overlap:] *= ramp[np.newaxis, ::-1]
return weight[:, :, np.newaxis]
def build_model(device):
"""Build and load the Axion model."""
torch = get_torch()
UNet, GaussianDiffusion = get_model_modules()
from huggingface_hub import hf_hub_download
print("[Axion] Building model architecture...")
image_size = 256
num_inference_steps = 1
# UNet configuration
unet = UNet(
in_channel=3,
out_channel=3,
norm_groups=16,
inner_channel=64,
channel_mults=[1, 2, 4, 8, 16],
attn_res=[],
res_blocks=1,
dropout=0,
image_size=image_size,
condition_ch=3
)
# Diffusion wrapper
schedule_opt = {
'schedule': 'linear',
'n_timestep': num_inference_steps,
'linear_start': 1e-6,
'linear_end': 1e-2,
'ddim': 1,
'lq_noiselevel': 0
}
opt = {
'stage': 2,
'ddim_steps': num_inference_steps,
'model': {
'beta_schedule': {
'train': {'n_timestep': 1000},
'val': schedule_opt
}
}
}
model = GaussianDiffusion(
denoise_fn=unet,
image_size=image_size,
channels=3,
loss_type='l1',
conditional=True,
schedule_opt=schedule_opt,
xT_noise_r=0,
seed=1,
opt=opt
)
model = model.to(device)
# Load weights
print("[Axion] Downloading weights...")
weights_path = hf_hub_download(
repo_id="Dhenenjay/Axion-S2O",
filename="I700000_E719_gen.pth"
)
print(f"[Axion] Loading weights from: {weights_path}")
state_dict = torch.load(weights_path, map_location=device, weights_only=False)
model.load_state_dict(state_dict, strict=False)
model.eval()
print("[Axion] Model ready!")
return model
def preprocess(image, device, image_size=256):
"""Preprocess input SAR image."""
torch = get_torch()
if image.mode != 'RGB':
image = image.convert('RGB')
if image.size != (image_size, image_size):
image = image.resize((image_size, image_size), Image.LANCZOS)
img_np = np.array(image).astype(np.float32) / 255.0
img_tensor = torch.from_numpy(img_np).permute(2, 0, 1)
img_tensor = img_tensor * 2.0 - 1.0
return img_tensor.unsqueeze(0).to(device)
def postprocess(tensor):
"""Postprocess output tensor to PIL Image."""
torch = get_torch()
tensor = tensor.squeeze(0).cpu()
tensor = torch.clamp(tensor, -1, 1)
tensor = (tensor + 1.0) / 2.0
img_np = (tensor.permute(1, 2, 0).numpy() * 255).astype(np.uint8)
return Image.fromarray(img_np)
def translate_tile(model, sar_pil, device, seed=42):
"""Translate a single tile."""
torch = get_torch()
if seed is not None:
torch.manual_seed(seed)
np.random.seed(seed)
sar_tensor = preprocess(sar_pil, device)
model.set_new_noise_schedule(
{
'schedule': 'linear',
'n_timestep': 1,
'linear_start': 1e-6,
'linear_end': 1e-2,
'ddim': 1,
'lq_noiselevel': 0
},
device,
num_train_timesteps=1000
)
with torch.no_grad():
output, _ = model.super_resolution(
sar_tensor,
continous=False,
seed=seed if seed is not None else 1,
img_s1=sar_tensor
)
return postprocess(output)
def enhance_image(image, contrast=1.1, sharpness=1.2, color=1.1):
"""Professional post-processing."""
if isinstance(image, np.ndarray):
image = Image.fromarray(image)
image = ImageEnhance.Contrast(image).enhance(contrast)
image = ImageEnhance.Sharpness(image).enhance(sharpness)
image = ImageEnhance.Color(image).enhance(color)
return image
def process_image(image, model, device, overlap=64):
"""Process image at full resolution with seamless tiling."""
if isinstance(image, Image.Image):
if image.mode != 'RGB':
image = image.convert('RGB')
img_np = np.array(image).astype(np.float32) / 255.0
else:
img_np = image
h, w = img_np.shape[:2]
tile_size = 256
step = tile_size - overlap
# Pad image
pad_h = (step - (h - overlap) % step) % step
pad_w = (step - (w - overlap) % step) % step
img_padded = np.pad(img_np, ((0, pad_h), (0, pad_w), (0, 0)), mode='reflect')
h_pad, w_pad = img_padded.shape[:2]
# Output arrays
output = np.zeros((h_pad, w_pad, 3), dtype=np.float32)
weights = np.zeros((h_pad, w_pad, 1), dtype=np.float32)
blend_weight = create_blend_weights(tile_size, overlap)
# Calculate positions
y_positions = list(range(0, h_pad - tile_size + 1, step))
x_positions = list(range(0, w_pad - tile_size + 1, step))
total_tiles = len(y_positions) * len(x_positions)
print(f"[Axion] Processing {total_tiles} tiles ({len(x_positions)}x{len(y_positions)}) at {w}x{h}...")
tile_idx = 0
for y in y_positions:
for x in x_positions:
# Extract tile
tile = img_padded[y:y+tile_size, x:x+tile_size]
tile_pil = Image.fromarray((tile * 255).astype(np.uint8))
# Translate
result_pil = translate_tile(model, tile_pil, device, seed=42)
result = np.array(result_pil).astype(np.float32) / 255.0
# Blend
output[y:y+tile_size, x:x+tile_size] += result * blend_weight
weights[y:y+tile_size, x:x+tile_size] += blend_weight
tile_idx += 1
if tile_idx % 10 == 0 or tile_idx == total_tiles:
print(f"[Axion] Tile {tile_idx}/{total_tiles}")
# Normalize
output = output / (weights + 1e-8)
output = output[:h, :w]
return (output * 255).astype(np.uint8)
# Global model cache
_cached_model = None
def _translate_impl(file, overlap, enhance_output):
"""Main translation function - runs on GPU."""
global _cached_model
if file is None:
return None, None, "Please upload a SAR image"
torch = get_torch()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"[Axion] Using device: {device}")
# Load model (cached)
if _cached_model is None:
_cached_model = build_model(device)
model = _cached_model
# Load image
filepath = file.name if hasattr(file, 'name') else file
print(f"[Axion] Loading: {filepath}")
image = load_sar_image(filepath)
w, h = image.size
print(f"[Axion] Input size: {w}x{h}")
start = time.time()
result = process_image(image, model, device, overlap=int(overlap))
elapsed = time.time() - start
result_pil = Image.fromarray(result)
if enhance_output:
result_pil = enhance_image(result_pil)
tiff_path = tempfile.mktemp(suffix='.tiff')
result_pil.save(tiff_path, format='TIFF', compression='lzw')
print(f"[Axion] Complete in {elapsed:.1f}s!")
info = f"Processed in {elapsed:.1f}s | Output: {result_pil.size[0]}x{result_pil.size[1]}"
return result_pil, tiff_path, info
# Apply GPU decorator
if GPU_AVAILABLE and spaces is not None:
@spaces.GPU(duration=300)
def translate_sar(file, overlap, enhance_output):
return _translate_impl(file, overlap, enhance_output)
else:
translate_sar = _translate_impl
print("[Axion] Building Gradio interface...")
# Create Gradio interface
with gr.Blocks(title="Axion - SAR to Optical") as demo:
gr.HTML("""
<style>
.gradio-container { background: linear-gradient(180deg, #0a0a0a 0%, #1a1a1a 100%) !important; }
</style>
<div style="text-align: center; padding: 40px 20px 20px 20px;">
<h1 style="font-family: 'Helvetica Neue', Arial, sans-serif; font-size: 3.2rem; font-weight: 200; color: #ffffff; margin-bottom: 0.5rem; letter-spacing: -0.02em;">SAR to Optical Image Translation</h1>
<p style="font-family: 'Helvetica Neue', Arial, sans-serif; font-size: 1.1rem; font-weight: 300; color: #888888;">Transform radar imagery into crystal-clear optical views using our foundation model</p>
</div>
""")
with gr.Row():
with gr.Column():
input_file = gr.File(label="Upload SAR Image", file_types=[".tif", ".tiff", ".png", ".jpg", ".jpeg"])
gr.HTML("""
<div style="font-size: 0.8rem; color: #666; padding: 8px 12px; background: rgba(255,255,255,0.03); border-radius: 6px; margin: 8px 0;">
<strong style="color: #888;">Input Guidelines:</strong><br>
• Use raw SAR imagery (single-band grayscale)<br>
• VV polarization preferred, VH also supported<br>
• Any resolution supported (processed in 256×256 tiles)
</div>
""")
with gr.Row():
overlap = gr.Slider(16, 128, value=64, step=16, label="Tile Overlap")
enhance = gr.Checkbox(value=True, label="Enhance Output")
submit_btn = gr.Button("Translate", variant="primary")
with gr.Column():
output_image = gr.Image(label="Optical Output")
output_file = gr.File(label="Download")
info_text = gr.Textbox(label="Info", show_label=False)
submit_btn.click(
fn=translate_sar,
inputs=[input_file, overlap, enhance],
outputs=[output_image, output_file, info_text]
)
gr.HTML("""
<div style="text-align: center; padding: 20px; color: #555; font-size: 0.85rem;">
Powered by <strong style="color: #888;">Axion</strong>
</div>
""")
print("[Axion] Launching app...")
if __name__ == "__main__":
demo.queue().launch(ssr_mode=False)
|