import gradio as gr from huggingface_hub import InferenceClient import os import requests CHAT_URL = os.getenv("CHAT_URL") PROJECT_ID = os.getenv("PROJECT_ID") def respond( message, history: list[dict[str, str]], system_message, token, # max_tokens, # temperature, # top_p, # hf_token: gr.OAuthToken, ): """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ # client = InferenceClient(token=hf_token.token, model="openai/gpt-oss-20b") # messages = [{"role": "system", "content": system_message}] # messages.extend(history) # messages.append({"role": "user", "content": message}) # response = "" # for message in client.chat_completion( # messages, # max_tokens=max_tokens, # stream=True, # temperature=temperature, # top_p=top_p, # ): # choices = message.choices # token = "" # if len(choices) and choices[0].delta.content: # token = choices[0].delta.content # response += token # yield response req = requests.post( CHAT_URL, json={ "project_id": PROJECT_ID, "session_id":system_message, "user_input":message, "update_variables": { "alfamidi":"", "alfagift":"", "karir":"", "layanan":"", "program":"", "voucher":"", "results":"", "identitas":"", "kerjasama":"" }, "output_variables": ["results"] }, headers={"Authorization" : f"Bearer {token}"} ) out = req.json()["data"]["results"] print("[OUT]",out) return out.encode('utf-8').decode('unicode_escape') """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ chatbot = gr.ChatInterface( respond, type="messages", additional_inputs=[ gr.Textbox(value="", label="session_id"), gr.Textbox(value="[TOKEN]", label="token"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), ], ) with gr.Blocks() as demo: chatbot.render() title = gr.HTML("

Use #ai to ask the ai

") if __name__ == "__main__": demo.launch()