Spaces:
Runtime error
Runtime error
| import torch.nn as nn | |
| try: | |
| import torchsparse | |
| import torchsparse.nn as spnn | |
| from torchsparse import PointTensor | |
| from ..ts.utils import initial_voxelize, point_to_voxel, voxel_to_point | |
| from ..ts import basic_blocks | |
| except ImportError: | |
| raise Exception('Required torchsparse lib. Reference: https://github.com/mit-han-lab/torchsparse/tree/v1.4.0') | |
| class Model(nn.Module): | |
| def __init__(self, config): | |
| super().__init__() | |
| cr = config.model_params.cr | |
| cs = config.model_params.layer_num | |
| cs = [int(cr * x) for x in cs] | |
| self.pres = self.vres = config.model_params.voxel_size | |
| self.num_classes = config.model_params.num_class | |
| self.stem = nn.Sequential( | |
| spnn.Conv3d(config.model_params.input_dims, cs[0], kernel_size=3, stride=1), | |
| spnn.BatchNorm(cs[0]), spnn.ReLU(True), | |
| spnn.Conv3d(cs[0], cs[0], kernel_size=3, stride=1), | |
| spnn.BatchNorm(cs[0]), spnn.ReLU(True)) | |
| self.stage1 = nn.Sequential( | |
| basic_blocks.BasicConvolutionBlock(cs[0], cs[0], ks=2, stride=2, dilation=1), | |
| basic_blocks.ResidualBlock(cs[0], cs[1], ks=3, stride=1, dilation=1), | |
| basic_blocks.ResidualBlock(cs[1], cs[1], ks=3, stride=1, dilation=1), | |
| ) | |
| self.stage2 = nn.Sequential( | |
| basic_blocks.BasicConvolutionBlock(cs[1], cs[1], ks=2, stride=2, dilation=1), | |
| basic_blocks.ResidualBlock(cs[1], cs[2], ks=3, stride=1, dilation=1), | |
| basic_blocks.ResidualBlock(cs[2], cs[2], ks=3, stride=1, dilation=1), | |
| ) | |
| self.stage3 = nn.Sequential( | |
| basic_blocks.BasicConvolutionBlock(cs[2], cs[2], ks=2, stride=2, dilation=1), | |
| basic_blocks.ResidualBlock(cs[2], cs[3], ks=3, stride=1, dilation=1), | |
| basic_blocks.ResidualBlock(cs[3], cs[3], ks=3, stride=1, dilation=1), | |
| ) | |
| self.stage4 = nn.Sequential( | |
| basic_blocks.BasicConvolutionBlock(cs[3], cs[3], ks=2, stride=2, dilation=1), | |
| basic_blocks.ResidualBlock(cs[3], cs[4], ks=3, stride=1, dilation=1), | |
| basic_blocks.ResidualBlock(cs[4], cs[4], ks=3, stride=1, dilation=1), | |
| ) | |
| self.up1 = nn.ModuleList([ | |
| basic_blocks.BasicDeconvolutionBlock(cs[4], cs[5], ks=2, stride=2), | |
| nn.Sequential( | |
| basic_blocks.ResidualBlock(cs[5] + cs[3], cs[5], ks=3, stride=1, | |
| dilation=1), | |
| basic_blocks.ResidualBlock(cs[5], cs[5], ks=3, stride=1, dilation=1), | |
| ) | |
| ]) | |
| self.up2 = nn.ModuleList([ | |
| basic_blocks.BasicDeconvolutionBlock(cs[5], cs[6], ks=2, stride=2), | |
| nn.Sequential( | |
| basic_blocks.ResidualBlock(cs[6] + cs[2], cs[6], ks=3, stride=1, | |
| dilation=1), | |
| basic_blocks.ResidualBlock(cs[6], cs[6], ks=3, stride=1, dilation=1), | |
| ) | |
| ]) | |
| self.up3 = nn.ModuleList([ | |
| basic_blocks.BasicDeconvolutionBlock(cs[6], cs[7], ks=2, stride=2), | |
| nn.Sequential( | |
| basic_blocks.ResidualBlock(cs[7] + cs[1], cs[7], ks=3, stride=1, | |
| dilation=1), | |
| basic_blocks.ResidualBlock(cs[7], cs[7], ks=3, stride=1, dilation=1), | |
| ) | |
| ]) | |
| self.up4 = nn.ModuleList([ | |
| basic_blocks.BasicDeconvolutionBlock(cs[7], cs[8], ks=2, stride=2), | |
| nn.Sequential( | |
| basic_blocks.ResidualBlock(cs[8] + cs[0], cs[8], ks=3, stride=1, | |
| dilation=1), | |
| basic_blocks.ResidualBlock(cs[8], cs[8], ks=3, stride=1, dilation=1), | |
| ) | |
| ]) | |
| self.classifier = nn.Sequential(nn.Linear(cs[8], self.num_classes)) | |
| self.point_transforms = nn.ModuleList([ | |
| nn.Sequential( | |
| nn.Linear(cs[0], cs[4]), | |
| nn.BatchNorm1d(cs[4]), | |
| nn.ReLU(True), | |
| ), | |
| nn.Sequential( | |
| nn.Linear(cs[4], cs[6]), | |
| nn.BatchNorm1d(cs[6]), | |
| nn.ReLU(True), | |
| ), | |
| nn.Sequential( | |
| nn.Linear(cs[6], cs[8]), | |
| nn.BatchNorm1d(cs[8]), | |
| nn.ReLU(True), | |
| ) | |
| ]) | |
| self.weight_initialization() | |
| self.dropout = nn.Dropout(0.3, True) | |
| def weight_initialization(self): | |
| for m in self.modules(): | |
| if isinstance(m, nn.BatchNorm1d): | |
| nn.init.constant_(m.weight, 1) | |
| nn.init.constant_(m.bias, 0) | |
| def forward(self, data_dict, return_logits=False, return_final_logits=False): | |
| x = data_dict['lidar'] | |
| # x: SparseTensor z: PointTensor | |
| z = PointTensor(x.F, x.C.float()) | |
| x0 = initial_voxelize(z, self.pres, self.vres) | |
| x0 = self.stem(x0) | |
| z0 = voxel_to_point(x0, z, nearest=False) | |
| z0.F = z0.F | |
| x1 = point_to_voxel(x0, z0) | |
| x1 = self.stage1(x1) | |
| x2 = self.stage2(x1) | |
| x3 = self.stage3(x2) | |
| x4 = self.stage4(x3) | |
| z1 = voxel_to_point(x4, z0) | |
| z1.F = z1.F + self.point_transforms[0](z0.F) | |
| y1 = point_to_voxel(x4, z1) | |
| if return_logits: | |
| output_dict = dict() | |
| output_dict['logits'] = y1.F | |
| output_dict['batch_indices'] = y1.C[:, -1] | |
| return output_dict | |
| y1.F = self.dropout(y1.F) | |
| y1 = self.up1[0](y1) | |
| y1 = torchsparse.cat([y1, x3]) | |
| y1 = self.up1[1](y1) | |
| y2 = self.up2[0](y1) | |
| y2 = torchsparse.cat([y2, x2]) | |
| y2 = self.up2[1](y2) | |
| z2 = voxel_to_point(y2, z1) | |
| z2.F = z2.F + self.point_transforms[1](z1.F) | |
| y3 = point_to_voxel(y2, z2) | |
| y3.F = self.dropout(y3.F) | |
| y3 = self.up3[0](y3) | |
| y3 = torchsparse.cat([y3, x1]) | |
| y3 = self.up3[1](y3) | |
| y4 = self.up4[0](y3) | |
| y4 = torchsparse.cat([y4, x0]) | |
| y4 = self.up4[1](y4) | |
| z3 = voxel_to_point(y4, z2) | |
| z3.F = z3.F + self.point_transforms[2](z2.F) | |
| if return_final_logits: | |
| output_dict = dict() | |
| output_dict['logits'] = z3.F | |
| output_dict['coords'] = z3.C[:, :3] | |
| output_dict['batch_indices'] = z3.C[:, -1].long() | |
| return output_dict | |
| # output = self.classifier(z3.F) | |
| data_dict['logits'] = z3.F | |
| return data_dict | |