Spaces:
Runtime error
Runtime error
modify on ZeroGPU
Browse files- app.py +12 -5
- app_config.py +0 -1
- sample_cond.py +4 -12
app.py
CHANGED
|
@@ -1,15 +1,20 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
-
import tempfile
|
| 4 |
import os
|
| 5 |
import torch
|
| 6 |
import numpy as np
|
| 7 |
from matplotlib.colors import LinearSegmentedColormap
|
| 8 |
|
| 9 |
-
from app_config import CSS, HEADER, FOOTER
|
| 10 |
-
import
|
| 11 |
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
|
| 15 |
def create_custom_colormap():
|
|
@@ -33,7 +38,7 @@ def colorize_depth(depth, log_scale):
|
|
| 33 |
@spaces.GPU
|
| 34 |
@torch.no_grad()
|
| 35 |
def generate_lidar(model, cond):
|
| 36 |
-
img, pcd =
|
| 37 |
return img, pcd
|
| 38 |
|
| 39 |
|
|
@@ -46,6 +51,8 @@ def load_camera(image):
|
|
| 46 |
return camera_cond
|
| 47 |
|
| 48 |
|
|
|
|
|
|
|
| 49 |
with gr.Blocks(css=CSS) as demo:
|
| 50 |
gr.Markdown(HEADER)
|
| 51 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
|
|
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
import numpy as np
|
| 6 |
from matplotlib.colors import LinearSegmentedColormap
|
| 7 |
|
| 8 |
+
from app_config import CSS, HEADER, FOOTER
|
| 9 |
+
from sample_cond import CKPT_PATH, MODEL_CFG, load_model_from_config, sample
|
| 10 |
|
| 11 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
def load_model():
|
| 15 |
+
pl_sd = torch.load(CKPT_PATH, map_location="cpu")
|
| 16 |
+
model = load_model_from_config(MODEL_CFG.model, pl_sd["state_dict"])
|
| 17 |
+
return model
|
| 18 |
|
| 19 |
|
| 20 |
def create_custom_colormap():
|
|
|
|
| 38 |
@spaces.GPU
|
| 39 |
@torch.no_grad()
|
| 40 |
def generate_lidar(model, cond):
|
| 41 |
+
img, pcd = sample(model, cond)
|
| 42 |
return img, pcd
|
| 43 |
|
| 44 |
|
|
|
|
| 51 |
return camera_cond
|
| 52 |
|
| 53 |
|
| 54 |
+
model = load_model().to(DEVICE)
|
| 55 |
+
|
| 56 |
with gr.Blocks(css=CSS) as demo:
|
| 57 |
gr.Markdown(HEADER)
|
| 58 |
|
app_config.py
CHANGED
|
@@ -14,7 +14,6 @@ CSS = """
|
|
| 14 |
max-height: 70vh;
|
| 15 |
}
|
| 16 |
"""
|
| 17 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 18 |
|
| 19 |
HEADER = '''
|
| 20 |
# LiDAR Diffusion
|
|
|
|
| 14 |
max-height: 70vh;
|
| 15 |
}
|
| 16 |
"""
|
|
|
|
| 17 |
|
| 18 |
HEADER = '''
|
| 19 |
# LiDAR Diffusion
|
sample_cond.py
CHANGED
|
@@ -6,9 +6,8 @@ from omegaconf import OmegaConf
|
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
from lidm.models.diffusion.ddim import DDIMSampler
|
| 9 |
-
from lidm.utils.misc_utils import instantiate_from_config
|
| 10 |
from lidm.utils.lidar_utils import range2pcd
|
| 11 |
-
from app_config import DEVICE
|
| 12 |
|
| 13 |
|
| 14 |
CUSTOM_STEPS = 50
|
|
@@ -20,7 +19,7 @@ CFG_PATH = os.path.join(MODEL_PATH, 'config.yaml')
|
|
| 20 |
CKPT_PATH = os.path.join(MODEL_PATH, 'model.ckpt')
|
| 21 |
|
| 22 |
# settings
|
| 23 |
-
|
| 24 |
|
| 25 |
|
| 26 |
def custom_to_pcd(x, config, rgb=None):
|
|
@@ -64,20 +63,13 @@ def logs2pil(logs, keys=["sample"]):
|
|
| 64 |
return imgs
|
| 65 |
|
| 66 |
|
| 67 |
-
def load_model_from_config(config, sd
|
| 68 |
model = instantiate_from_config(config)
|
| 69 |
model.load_state_dict(sd, strict=False)
|
| 70 |
-
model.to(device)
|
| 71 |
model.eval()
|
| 72 |
return model
|
| 73 |
|
| 74 |
|
| 75 |
-
def load_model():
|
| 76 |
-
pl_sd = torch.load(CKPT_PATH, map_location="cpu")
|
| 77 |
-
model = load_model_from_config(model_config.model, pl_sd["state_dict"], DEVICE)
|
| 78 |
-
return model
|
| 79 |
-
|
| 80 |
-
|
| 81 |
@torch.no_grad()
|
| 82 |
def convsample_ddim(model, cond, steps, shape, eta=1.0, verbose=False):
|
| 83 |
ddim = DDIMSampler(model)
|
|
@@ -103,7 +95,7 @@ def make_convolutional_sample(model, batch, batch_size, custom_steps=None, eta=1
|
|
| 103 |
def sample(model, cond):
|
| 104 |
batch = {'camera': cond}
|
| 105 |
img = make_convolutional_sample(model, batch, batch_size=1, custom_steps=CUSTOM_STEPS, eta=ETA) # TODO add arguments for batch_size, custom_steps and eta
|
| 106 |
-
pcd = custom_to_pcd(img,
|
| 107 |
img = img.squeeze().detach().cpu().numpy()
|
| 108 |
return img, pcd
|
| 109 |
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
|
| 8 |
from lidm.models.diffusion.ddim import DDIMSampler
|
| 9 |
+
from lidm.utils.misc_utils import instantiate_from_config
|
| 10 |
from lidm.utils.lidar_utils import range2pcd
|
|
|
|
| 11 |
|
| 12 |
|
| 13 |
CUSTOM_STEPS = 50
|
|
|
|
| 19 |
CKPT_PATH = os.path.join(MODEL_PATH, 'model.ckpt')
|
| 20 |
|
| 21 |
# settings
|
| 22 |
+
MODEL_CFG = OmegaConf.load(CFG_PATH)
|
| 23 |
|
| 24 |
|
| 25 |
def custom_to_pcd(x, config, rgb=None):
|
|
|
|
| 63 |
return imgs
|
| 64 |
|
| 65 |
|
| 66 |
+
def load_model_from_config(config, sd):
|
| 67 |
model = instantiate_from_config(config)
|
| 68 |
model.load_state_dict(sd, strict=False)
|
|
|
|
| 69 |
model.eval()
|
| 70 |
return model
|
| 71 |
|
| 72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
@torch.no_grad()
|
| 74 |
def convsample_ddim(model, cond, steps, shape, eta=1.0, verbose=False):
|
| 75 |
ddim = DDIMSampler(model)
|
|
|
|
| 95 |
def sample(model, cond):
|
| 96 |
batch = {'camera': cond}
|
| 97 |
img = make_convolutional_sample(model, batch, batch_size=1, custom_steps=CUSTOM_STEPS, eta=ETA) # TODO add arguments for batch_size, custom_steps and eta
|
| 98 |
+
pcd = custom_to_pcd(img, MODEL_CFG)[0].astype(np.float32)
|
| 99 |
img = img.squeeze().detach().cpu().numpy()
|
| 100 |
return img, pcd
|
| 101 |
|