Spaces:
Runtime error
Runtime error
init
Browse files- app.py +3 -7
- app_config.py +10 -4
app.py
CHANGED
|
@@ -6,7 +6,7 @@ import torch
|
|
| 6 |
import numpy as np
|
| 7 |
from matplotlib.colors import LinearSegmentedColormap
|
| 8 |
|
| 9 |
-
from app_config import CSS,
|
| 10 |
import sample_cond
|
| 11 |
|
| 12 |
model = sample_cond.load_model()
|
|
@@ -30,7 +30,6 @@ def colorize_depth(depth, log_scale):
|
|
| 30 |
return rgb
|
| 31 |
|
| 32 |
|
| 33 |
-
@spaces.GPU
|
| 34 |
@torch.no_grad()
|
| 35 |
def generate_lidar(model, cond):
|
| 36 |
img, pcd = sample_cond.sample(model, cond)
|
|
@@ -47,10 +46,7 @@ def load_camera(image):
|
|
| 47 |
|
| 48 |
|
| 49 |
with gr.Blocks(css=CSS) as demo:
|
| 50 |
-
gr.Markdown(
|
| 51 |
-
gr.Markdown(DESCRIPTION)
|
| 52 |
-
gr.Markdown("### Camera-to-LiDAR Demo")
|
| 53 |
-
# gr.Markdown("You can slide the output to compare the depth prediction with input image")
|
| 54 |
|
| 55 |
with gr.Row():
|
| 56 |
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
|
|
@@ -76,7 +72,7 @@ with gr.Blocks(css=CSS) as demo:
|
|
| 76 |
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[output_image, raw_file],
|
| 77 |
fn=on_submit, cache_examples=True)
|
| 78 |
|
| 79 |
-
gr.Markdown(
|
| 80 |
|
| 81 |
|
| 82 |
if __name__ == '__main__':
|
|
|
|
| 6 |
import numpy as np
|
| 7 |
from matplotlib.colors import LinearSegmentedColormap
|
| 8 |
|
| 9 |
+
from app_config import CSS, HEADER, FOOTER, DEVICE
|
| 10 |
import sample_cond
|
| 11 |
|
| 12 |
model = sample_cond.load_model()
|
|
|
|
| 30 |
return rgb
|
| 31 |
|
| 32 |
|
|
|
|
| 33 |
@torch.no_grad()
|
| 34 |
def generate_lidar(model, cond):
|
| 35 |
img, pcd = sample_cond.sample(model, cond)
|
|
|
|
| 46 |
|
| 47 |
|
| 48 |
with gr.Blocks(css=CSS) as demo:
|
| 49 |
+
gr.Markdown(HEADER)
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
with gr.Row():
|
| 52 |
input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input')
|
|
|
|
| 72 |
examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[output_image, raw_file],
|
| 73 |
fn=on_submit, cache_examples=True)
|
| 74 |
|
| 75 |
+
gr.Markdown(FOOTER)
|
| 76 |
|
| 77 |
|
| 78 |
if __name__ == '__main__':
|
app_config.py
CHANGED
|
@@ -12,10 +12,16 @@ CSS = """
|
|
| 12 |
}
|
| 13 |
"""
|
| 14 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
```bibtex
|
| 20 |
@inproceedings{ran2024towards,
|
| 21 |
title={Towards Realistic Scene Generation with LiDAR Diffusion Models},
|
|
|
|
| 12 |
}
|
| 13 |
"""
|
| 14 |
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
| 15 |
+
|
| 16 |
+
HEADER = '''
|
| 17 |
+
# LiDAR Diffusion
|
| 18 |
+
Official demo for **LiDAR Diffusion: Towards Realistic Scene Generation with LiDAR Diffusion Models**.
|
| 19 |
+
Please refer to our [paper](https://arxiv.org/abs/2404.00815), [project page](https://lidar-diffusion.github.io/), or [github](https://github.com/hancyran/LiDAR-Diffusion) for more details.
|
| 20 |
+
|
| 21 |
+
### Camera-to-LiDAR Demo
|
| 22 |
+
'''
|
| 23 |
+
|
| 24 |
+
FOOTER = r"""
|
| 25 |
```bibtex
|
| 26 |
@inproceedings{ran2024towards,
|
| 27 |
title={Towards Realistic Scene Generation with LiDAR Diffusion Models},
|