Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,164 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from sklearn.metrics import (
|
| 4 |
+
accuracy_score,
|
| 5 |
+
precision_score,
|
| 6 |
+
recall_score,
|
| 7 |
+
f1_score)
|
| 8 |
+
from imblearn.metrics import specificity_score
|
| 9 |
+
import difflib as dl
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Title and description
|
| 14 |
+
st.title("Robustness and Sensitivity of BERT Models Predicting Alzheimer's Disease from Text")
|
| 15 |
+
st.markdown("Supplemantary material accompanying the following paper: Jekaterina Novikova (2021).[Robustness and Sensitivity of BERT Models Predicting Alzheimer's Disease from Text](https://arxiv.org/abs/2109.11888). \
|
| 16 |
+
*In: The 7th Workshop on Noisy User-generated Text at EMNLP*, 2021.", unsafe_allow_html=True)
|
| 17 |
+
st.image('img/poster2.png')
|
| 18 |
+
st.write("[Link](https://arxiv.org/abs/2109.11888) to the high-res version of the poster.")
|
| 19 |
+
|
| 20 |
+
# Loading data
|
| 21 |
+
my_data = "data/df_test_all.csv"
|
| 22 |
+
@st.cache(persist = True)
|
| 23 |
+
def load_data(dataset):
|
| 24 |
+
df = pd.read_csv(os.path.join(dataset))
|
| 25 |
+
return df
|
| 26 |
+
|
| 27 |
+
df = load_data(my_data)
|
| 28 |
+
|
| 29 |
+
# Sidebar to select type and level of perturbation selection menu
|
| 30 |
+
st.sidebar.title("Selection Menu")
|
| 31 |
+
st.sidebar.markdown("Please select the type and the level of text perturbation below. <hr>", unsafe_allow_html=True)
|
| 32 |
+
|
| 33 |
+
type = st.sidebar.selectbox('Type of perturbations', ["Original / No perturbations", "Delete filled pauses", "Delete info units", "Back-translation", "Substitute with WordNet synonyms"])
|
| 34 |
+
level = None
|
| 35 |
+
iu_type = None
|
| 36 |
+
|
| 37 |
+
if type in ["Substitute with word2vec", "Substitute with WordNet synonyms"]:
|
| 38 |
+
level = st.sidebar.slider('Level of perturbations:', min_value = 0.1, max_value = 0.90, step = 0.10)
|
| 39 |
+
elif type == "Delete info units":
|
| 40 |
+
iu_type = st.sidebar.radio('Type of info units:', ["Action only", "Location only", "Object only", "Subject only"])
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
# select column names based on subtype of perturbations:
|
| 44 |
+
def select_pred_column(type, level = None, iu_type = None):
|
| 45 |
+
if type == "Original / No perturbations":
|
| 46 |
+
prediction = "pred_original"
|
| 47 |
+
elif type == "Delete filled pauses":
|
| 48 |
+
prediction = "pred_no_filled_pause"
|
| 49 |
+
elif type == "Delete info units":
|
| 50 |
+
if iu_type == "Action only":
|
| 51 |
+
prediction = "pred_no_iu_action"
|
| 52 |
+
elif iu_type == "Location only":
|
| 53 |
+
prediction = "pred_no_iu_loc"
|
| 54 |
+
elif iu_type == "Object only":
|
| 55 |
+
prediction = "pred_no_iu_obj"
|
| 56 |
+
elif iu_type == "Subject only":
|
| 57 |
+
prediction = "pred_no_iu_subj"
|
| 58 |
+
elif type == "Back-translation":
|
| 59 |
+
prediction = "pred_back_transl"
|
| 60 |
+
elif type == "Substitute with word2vec":
|
| 61 |
+
lvl_str = str(level * 100)[:2]
|
| 62 |
+
prediction = "pred_w2v_"+lvl_str
|
| 63 |
+
elif type == "Substitute with WordNet synonyms":
|
| 64 |
+
lvl_str = str(level * 100)[:2]
|
| 65 |
+
prediction = "pred_wnet_"+lvl_str
|
| 66 |
+
return prediction
|
| 67 |
+
|
| 68 |
+
def select_aug_column(type, level = None, iu_type = None):
|
| 69 |
+
if type == "Original / No perturbations":
|
| 70 |
+
augmentation = "utterances"
|
| 71 |
+
elif type == "Delete filled pauses":
|
| 72 |
+
augmentation = "aug_no_filled_pause"
|
| 73 |
+
elif type == "Delete info units":
|
| 74 |
+
if iu_type == "Action only":
|
| 75 |
+
augmentation = "aug_no_iu_action"
|
| 76 |
+
elif iu_type == "Location only":
|
| 77 |
+
augmentation = "aug_no_iu_loc"
|
| 78 |
+
elif iu_type == "Object only":
|
| 79 |
+
augmentation = "aug_no_iu_obj"
|
| 80 |
+
elif iu_type == "Subject only":
|
| 81 |
+
augmentation = "aug_no_iu_subj"
|
| 82 |
+
elif type == "Back-translation":
|
| 83 |
+
augmentation = "aug_back_transl"
|
| 84 |
+
elif type == "Substitute with word2vec":
|
| 85 |
+
lvl_str = str(level * 100)[:2]
|
| 86 |
+
augmentation = "aug_w2v_"+lvl_str
|
| 87 |
+
elif type == "Substitute with WordNet synonyms":
|
| 88 |
+
lvl_str = str(level * 100)[:2]
|
| 89 |
+
augmentation = "aug_wnet_"+lvl_str
|
| 90 |
+
return augmentation
|
| 91 |
+
|
| 92 |
+
#part I
|
| 93 |
+
st.header("1. Classification Performance")
|
| 94 |
+
|
| 95 |
+
st.write("The performance of the fine-tuned BERT model tested on the samples of text with applied perturbations, as selected in the Selection Menu.")
|
| 96 |
+
|
| 97 |
+
if st.button("Calculate performance"):
|
| 98 |
+
acc = accuracy_score(df.label.values, df[select_pred_column(type, level, iu_type)].values)
|
| 99 |
+
f1 = f1_score(df.label.values, df[select_pred_column(type, level, iu_type)].values)
|
| 100 |
+
prec = precision_score(df.label.values, df[select_pred_column(type, level, iu_type)].values)
|
| 101 |
+
rec = recall_score(df.label.values, df[select_pred_column(type, level, iu_type)].values)
|
| 102 |
+
spec = specificity_score(df.label.values, df[select_pred_column(type, level, iu_type)].values)
|
| 103 |
+
|
| 104 |
+
df_perf = pd.DataFrame([acc, f1, prec, rec, spec])
|
| 105 |
+
df_perf.index = ["Accuracy", "F1-score", "Precision", "Recall/Sensitivity", "Specificity"]
|
| 106 |
+
df_perf.columns = ["Performance"]
|
| 107 |
+
st.table( df_perf.T)
|
| 108 |
+
|
| 109 |
+
#part II
|
| 110 |
+
st.header("2. Examples of Text Perturbations")
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def text_to_code(text):
|
| 114 |
+
if text == "Healthy Control (label 0)":
|
| 115 |
+
code = [0]
|
| 116 |
+
elif text == "Alzheimer's Disease (label 1)":
|
| 117 |
+
code = [1]
|
| 118 |
+
else:
|
| 119 |
+
code = [0,1]
|
| 120 |
+
return code
|
| 121 |
+
|
| 122 |
+
dx = st.radio('Real disease:', ["Alzheimer's Disease (label 1)", "Healthy Control (label 0)", "both"])
|
| 123 |
+
pred1 = st.radio('Original prediction (before text perturbation):', ["Alzheimer's Disease (label 1)", "Healthy Control (label 0)", "Don't care"])
|
| 124 |
+
pred2 = st.radio('Prediction after text perturbation:', ["Alzheimer's Disease (label 1)", "Healthy Control (label 0)", "Don't care"])
|
| 125 |
+
|
| 126 |
+
subject_ids = df[(df["label"].isin(text_to_code(dx))) & \
|
| 127 |
+
(df["pred_original"].isin(text_to_code(pred1))) &\
|
| 128 |
+
(df[select_pred_column(type, level, iu_type)].isin(text_to_code(pred2)))]["subject_id"]
|
| 129 |
+
|
| 130 |
+
st.write('There are', subject_ids.shape[0], 'text sample(s) that correspond to such a selection.')
|
| 131 |
+
|
| 132 |
+
if subject_ids.shape[0] > 0:
|
| 133 |
+
subj_choice = st.selectbox("Select a text sample:", subject_ids)
|
| 134 |
+
|
| 135 |
+
df_select = df[df.subject_id == subj_choice][["subject_id", "sex", "age", "label", "pred_original", select_pred_column(type, level, iu_type)]]
|
| 136 |
+
df_select.age = df_select.age.astype(int)
|
| 137 |
+
df_select.columns = ["SubjectID", "Sex", "Age", "Real disease label", "Original prediction", "Prediction after perturbation"]
|
| 138 |
+
st.table(df_select)
|
| 139 |
+
|
| 140 |
+
text_orig = df[df.subject_id == subj_choice]["utterances"].values[0]
|
| 141 |
+
text_aug = df[df.subject_id == subj_choice][select_aug_column(type, level, iu_type)].values[0]
|
| 142 |
+
|
| 143 |
+
words_aug = set(text_aug.replace("'"," ' ").split())
|
| 144 |
+
words_orig = set(text_orig.replace("'"," ' ").split())
|
| 145 |
+
s1 = text_orig.replace("'"," ' ").split()
|
| 146 |
+
s2 = text_aug.replace("'"," ' ").split()
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
seqmatcher = dl.SequenceMatcher(None, s1, s2, autojunk=False)
|
| 150 |
+
res_orig, res_aug = [], []
|
| 151 |
+
for tag, a0, a1, b0, b1 in seqmatcher.get_opcodes():
|
| 152 |
+
if tag == "equal":
|
| 153 |
+
res_orig += s1[a0:a1]
|
| 154 |
+
res_aug += s2[b0:b1]
|
| 155 |
+
else:
|
| 156 |
+
res_orig += ["<span style='color:blue'> <em><b>"+" ".join(s1[a0:a1])+"</b></em></span>"]
|
| 157 |
+
res_aug += ["<span style='color:red'> <em><b>"+" ".join(s2[b0:b1])+"</b></em></span> "]
|
| 158 |
+
|
| 159 |
+
st.write("**<span style='font-size:larger'>The original text</span>**<br>(words are coloured in blue if they were selected for perturbation):", unsafe_allow_html=True)
|
| 160 |
+
st.write('<p style="padding: 1em">'+' '.join(res_orig)+'</p>', unsafe_allow_html=True)
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
st.write("**<span style='font-size:larger'>The perturbed text</span>**<br>(words are coloured in red if they appeared after perturbation):", unsafe_allow_html=True)
|
| 164 |
+
st.write('<p style="padding: 1em">'+' '.join(res_aug)+'</p>', unsafe_allow_html=True)
|