Spaces:
Running
on
Zero
Running
on
Zero
| import gradio as gr | |
| import numpy as np | |
| import spaces # This is a special module for Hugging Face Spaces, not needed for local execution | |
| import torch | |
| import random | |
| import json | |
| import os | |
| from PIL import Image | |
| from diffusers import FluxKontextPipeline | |
| from diffusers.utils import load_image | |
| from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard | |
| from safetensors.torch import load_file | |
| import requests | |
| import re | |
| # Load Kontext model from your local path | |
| MAX_SEED = np.iinfo(np.int32).max | |
| # Use the local path for the base model as in your test.py | |
| pipe = FluxKontextPipeline.from_pretrained( | |
| "black-forest-labs/FLUX.1-Kontext-dev", | |
| torch_dtype=torch.bfloat16 | |
| ).to("cuda") | |
| # Load LoRA data from our custom JSON file | |
| with open("kontext_loras.json", "r") as file: | |
| data = json.load(file) | |
| # Add default values for keys that might be missing, to prevent errors | |
| flux_loras_raw = [ | |
| { | |
| "image": item["image"], | |
| "title": item["title"], | |
| "repo": item["repo"], | |
| "weights": item.get("weights", "pytorch_lora_weights.safetensors"), | |
| "prompt": item.get("prompt", f"Turn this image into {item['title']} style."), | |
| # The following keys are kept for compatibility with the original demo structure, | |
| # but our simplified logic doesn't heavily rely on them. | |
| "lora_type": item.get("lora_type", "flux"), | |
| "lora_scale_config": item.get("lora_scale", 1.0), # Default scale set to 1.0 | |
| "prompt_placeholder": item.get("prompt_placeholder", "You can edit the prompt here..."), | |
| } | |
| for item in data | |
| ] | |
| print(f"Loaded {len(flux_loras_raw)} LoRAs from kontext_loras.json") | |
| def update_selection(selected_state: gr.SelectData, flux_loras): | |
| """Update UI when a LoRA is selected""" | |
| if selected_state.index >= len(flux_loras): | |
| return "### No LoRA selected", gr.update(), None, gr.update() | |
| selected_lora = flux_loras[selected_state.index] | |
| lora_repo = selected_lora["repo"] | |
| default_prompt = selected_lora.get("prompt") | |
| updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo})" | |
| optimal_scale = selected_lora.get("lora_scale_config", 1.0) | |
| print("Selected Style: ", selected_lora['title']) | |
| print("Optimal Scale: ", optimal_scale) | |
| return updated_text, gr.update(value=default_prompt), selected_state.index, optimal_scale | |
| # This wrapper is kept for compatibility with the Gradio event triggers | |
| def infer_with_lora_wrapper(input_image, prompt, selected_index, lora_state, custom_lora, seed=0, guidance_scale=2.5, num_inference_steps=28, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)): | |
| """Wrapper function to handle state serialization""" | |
| # The 'custom_lora' and 'lora_state' arguments are no longer used but kept in the signature | |
| return infer_with_lora(input_image, prompt, selected_index, seed, guidance_scale, num_inference_steps, lora_scale, flux_loras, progress) | |
| # This decorator is only for Hugging Face Spaces hardware, not needed for local execution | |
| def infer_with_lora(input_image, prompt, selected_index, seed=0, guidance_scale=2.5, num_inference_steps=28, lora_scale=1.0, flux_loras=None, progress=gr.Progress(track_tqdm=True)): | |
| """Generate image with selected LoRA""" | |
| global pipe | |
| # The seed is now always taken directly from the input. Randomization has been removed. | |
| # Unload any previous LoRA to ensure a clean state | |
| if "selected_lora" in pipe.get_active_adapters(): | |
| pipe.unload_lora_weights() | |
| # Determine which LoRA to use from our gallery | |
| lora_to_use = None | |
| if selected_index is not None and flux_loras and selected_index < len(flux_loras): | |
| lora_to_use = flux_loras[selected_index] | |
| if lora_to_use: | |
| print(f"Applying LoRA: {lora_to_use['title']}") | |
| try: | |
| # Load LoRA directly from the Hugging Face Hub | |
| pipe.load_lora_weights( | |
| lora_to_use["repo"], | |
| weight_name=lora_to_use["weights"], | |
| adapter_name="selected_lora" | |
| ) | |
| pipe.set_adapters(["selected_lora"], adapter_weights=[lora_scale]) | |
| print(f"Loaded {lora_to_use['repo']} with scale {lora_scale}") | |
| except Exception as e: | |
| print(f"Error loading LoRA: {e}") | |
| # Use the prompt from the textbox directly. | |
| final_prompt = prompt | |
| print(f"Using prompt: {final_prompt}") | |
| input_image = input_image.convert("RGB") | |
| try: | |
| image = pipe( | |
| image=input_image, | |
| width=input_image.size[0], | |
| height=input_image.size[1], | |
| prompt=final_prompt, | |
| guidance_scale=guidance_scale, | |
| num_inference_steps=num_inference_steps, | |
| generator=torch.Generator().manual_seed(seed) | |
| ).images[0] | |
| # The seed value is no longer returned, as it's not being changed. | |
| return image, lora_scale | |
| except Exception as e: | |
| print(f"Error during inference: {e}") | |
| # Return an error state for all outputs | |
| return None, lora_scale | |
| # CSS styling | |
| css = """ | |
| #main_app { | |
| display: flex; | |
| gap: 20px; | |
| } | |
| #box_column { | |
| min-width: 400px; | |
| } | |
| #title{text-align: center} | |
| #title h1{font-size: 3em; display:inline-flex; align-items:center} | |
| #title img{width: 100px; margin-right: 0.5em} | |
| #selected_lora { | |
| color: #2563eb; | |
| font-weight: bold; | |
| } | |
| #prompt { | |
| flex-grow: 1; | |
| } | |
| #run_button { | |
| background: linear-gradient(45deg, #2563eb, #3b82f6); | |
| color: white; | |
| border: none; | |
| padding: 8px 16px; | |
| border-radius: 6px; | |
| font-weight: bold; | |
| } | |
| .custom_lora_card { | |
| background: #f8fafc; | |
| border: 1px solid #e2e8f0; | |
| border-radius: 8px; | |
| padding: 12px; | |
| margin: 8px 0; | |
| } | |
| #gallery{ | |
| overflow: scroll !important | |
| } | |
| /* Custom CSS to ensure the input image is fully visible */ | |
| #input_image_display div[data-testid="image"] img { | |
| object-fit: contain !important; | |
| } | |
| """ | |
| # Create Gradio interface | |
| with gr.Blocks(css=css, theme=gr.themes.Ocean(font=[gr.themes.GoogleFont("Lexend Deca"), "sans-serif"])) as demo: | |
| gr_flux_loras = gr.State(value=flux_loras_raw) | |
| title = gr.HTML( | |
| """<h1><img src="https://huggingface.co/spaces/kontext-community/FLUX.1-Kontext-portrait/resolve/main/dora_kontext.png" alt="LoRA"> Kontext-Style LoRA Explorer</h1>""", | |
| elem_id="title", | |
| ) | |
| gr.Markdown("A demo for the style LoRAs from the [Kontext-Style](https://huggingface.co/Kontext-Style) 🤗") | |
| selected_state = gr.State(value=None) | |
| # The following states are no longer used by the simplified logic but kept for component structure | |
| custom_loaded_lora = gr.State(value=None) | |
| lora_state = gr.State(value=1.0) | |
| with gr.Row(elem_id="main_app"): | |
| with gr.Column(scale=4, elem_id="box_column"): | |
| with gr.Group(elem_id="gallery_box"): | |
| input_image = gr.Image( | |
| label="Upload a picture of yourself", | |
| type="pil", | |
| height=300, | |
| elem_id="input_image_display" | |
| ) | |
| gallery = gr.Gallery( | |
| label="Pick a LoRA", | |
| allow_preview=False, | |
| columns=4, | |
| elem_id="gallery", | |
| show_share_button=False, | |
| height=300, | |
| object_fit="contain" | |
| ) | |
| custom_model = gr.Textbox( | |
| label="Or enter a custom HuggingFace FLUX LoRA", | |
| placeholder="e.g., username/lora-name", | |
| visible=False | |
| ) | |
| custom_model_card = gr.HTML(visible=False) | |
| custom_model_button = gr.Button("Remove custom LoRA", visible=False) | |
| with gr.Column(scale=5): | |
| with gr.Row(): | |
| prompt = gr.Textbox( | |
| label="Editing Prompt", | |
| show_label=False, | |
| lines=1, | |
| max_lines=1, | |
| placeholder="opt - describe the person/subject, e.g. 'a man with glasses and a beard'", | |
| elem_id="prompt" | |
| ) | |
| run_button = gr.Button("Generate", elem_id="run_button") | |
| result = gr.Image(label="Generated Image", interactive=False, height=512) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| lora_scale = gr.Slider( | |
| label="LoRA Scale", | |
| minimum=0, | |
| maximum=2, | |
| step=0.1, | |
| value=1.0, | |
| info="Controls the strength of the LoRA effect" | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1, | |
| maximum=10, | |
| step=0.1, | |
| value=2.5, | |
| ) | |
| num_inference_steps = gr.Slider( | |
| label="Timesteps", | |
| minimum=1, | |
| maximum=100, | |
| step=1, | |
| value=28, | |
| info="Number of inference steps" | |
| ) | |
| prompt_title = gr.Markdown( | |
| value="### Click on a LoRA in the gallery to select it", | |
| visible=True, | |
| elem_id="selected_lora", | |
| ) | |
| # Event handlers | |
| # The custom model inputs are no longer needed as we've hidden them. | |
| gallery.select( | |
| fn=update_selection, | |
| inputs=[gr_flux_loras], | |
| outputs=[prompt_title, prompt, selected_state, lora_scale], | |
| show_progress=False | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer_with_lora_wrapper, | |
| inputs=[input_image, prompt, selected_state, lora_state, custom_loaded_lora, seed, guidance_scale, num_inference_steps, lora_scale, gr_flux_loras], | |
| outputs=[result, lora_state] | |
| ) | |
| # Initialize gallery | |
| demo.load( | |
| fn=lambda loras: ([(item["image"], item["title"]) for item in loras], loras), | |
| inputs=[gr_flux_loras], | |
| outputs=[gallery, gr_flux_loras] | |
| ) | |
| demo.queue(default_concurrency_limit=None) | |
| demo.launch() |