Spaces:
Running
Running
Ali Hmaou
commited on
Commit
·
1b8d07e
1
Parent(s):
1dbafb0
Premiere version de MCEPTION :)
Browse files- .gitignore +51 -0
- README.md +0 -13
- app.py +13 -0
- data/references/.gitkeep +0 -0
- data/uploads/.gitkeep +0 -0
- requirements.txt +7 -0
- src/core/builder/code_generator.py +173 -0
- src/core/builder/proposal_generator.py +94 -0
- src/core/builder/reference_parser.py +0 -0
- src/core/deployer/huggingface.py +122 -0
- src/core/security/sandboxing.py +0 -0
- src/core/security/validation.py +0 -0
- src/core/state/session_manager.py +49 -0
- src/mcp_server/playground.py +124 -0
- src/mcp_server/server.py +277 -0
- src/mcp_server/tools.py +165 -0
- tests/test_deploy.py +58 -0
.gitignore
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Python
|
| 2 |
+
__pycache__/
|
| 3 |
+
*.py[cod]
|
| 4 |
+
*$py.class
|
| 5 |
+
*.so
|
| 6 |
+
.Python
|
| 7 |
+
build/
|
| 8 |
+
develop-eggs/
|
| 9 |
+
dist/
|
| 10 |
+
downloads/
|
| 11 |
+
eggs/
|
| 12 |
+
.eggs/
|
| 13 |
+
lib/
|
| 14 |
+
lib64/
|
| 15 |
+
parts/
|
| 16 |
+
sdist/
|
| 17 |
+
var/
|
| 18 |
+
wheels/
|
| 19 |
+
share/python-wheels/
|
| 20 |
+
*.egg-info/
|
| 21 |
+
.installed.cfg
|
| 22 |
+
*.egg
|
| 23 |
+
MANIFEST
|
| 24 |
+
|
| 25 |
+
# Virtual Environment
|
| 26 |
+
.env
|
| 27 |
+
.venv
|
| 28 |
+
env/
|
| 29 |
+
venv/
|
| 30 |
+
ENV/
|
| 31 |
+
env.bak/
|
| 32 |
+
venv.bak/
|
| 33 |
+
|
| 34 |
+
# IDE
|
| 35 |
+
.vscode/
|
| 36 |
+
.idea/
|
| 37 |
+
|
| 38 |
+
# Local Data & References (Swagger, CSV, etc.)
|
| 39 |
+
data/*
|
| 40 |
+
!data/references/
|
| 41 |
+
!data/uploads/
|
| 42 |
+
|
| 43 |
+
# Ignore contents of data subdirectories but keep gitkeep files
|
| 44 |
+
data/references/*
|
| 45 |
+
!data/references/.gitkeep
|
| 46 |
+
|
| 47 |
+
data/uploads/*
|
| 48 |
+
!data/uploads/.gitkeep
|
| 49 |
+
|
| 50 |
+
# Sensitive Information
|
| 51 |
+
secrets.yaml
|
README.md
CHANGED
|
@@ -1,13 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Metamcp Proto
|
| 3 |
-
emoji: 🏢
|
| 4 |
-
colorFrom: red
|
| 5 |
-
colorTo: pink
|
| 6 |
-
sdk: gradio
|
| 7 |
-
sdk_version: 6.0.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
short_description: 'Prototype '
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import gradio as gr
|
| 4 |
+
|
| 5 |
+
# Ajoute le dossier courant au path pour les imports relatifs
|
| 6 |
+
sys.path.append(os.path.dirname(__file__))
|
| 7 |
+
|
| 8 |
+
# Importe l'interface Gradio depuis le serveur
|
| 9 |
+
from src.mcp_server.server import demo
|
| 10 |
+
|
| 11 |
+
if __name__ == "__main__":
|
| 12 |
+
# Lance le serveur (Gradio gère automatiquement le port sur Spaces)
|
| 13 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, mcp_server=True, show_error=True)
|
data/references/.gitkeep
ADDED
|
File without changes
|
data/uploads/.gitkeep
ADDED
|
File without changes
|
requirements.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
gradio>=5.0.0
|
| 2 |
+
mcp>=1.0.0
|
| 3 |
+
huggingface_hub>=0.26.0
|
| 4 |
+
python-dotenv>=1.0.0
|
| 5 |
+
smolagents[mcp]>=1.0.0
|
| 6 |
+
pandas>=2.0.0
|
| 7 |
+
requests>=2.31.0
|
src/core/builder/code_generator.py
ADDED
|
@@ -0,0 +1,173 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import textwrap
|
| 2 |
+
|
| 3 |
+
class CodeGenerator:
|
| 4 |
+
@staticmethod
|
| 5 |
+
def generate_gradio_app(function_code: str, inputs: dict, output_desc: str) -> str:
|
| 6 |
+
"""
|
| 7 |
+
Génère le code complet d'une application Gradio à partir d'un snippet de fonction.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
function_code: Le code source de la fonction principale (ex: def count_r(word): ...)
|
| 11 |
+
inputs: Dict décrivant les inputs (ex: {"word": "text"})
|
| 12 |
+
output_desc: Description de l'output
|
| 13 |
+
|
| 14 |
+
Returns:
|
| 15 |
+
Le code source complet de app.py
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
# Analyse simple pour trouver le nom de la fonction (très naïf pour l'instant)
|
| 19 |
+
# On suppose que le code contient "def nom_fonction("
|
| 20 |
+
import re
|
| 21 |
+
match = re.search(r"def\s+([a-zA-Z_][a-zA-Z0-9_]*)\s*\(", function_code)
|
| 22 |
+
func_name = match.group(1) if match else "main_function"
|
| 23 |
+
|
| 24 |
+
# Mapping des types MCP/JSON vers types Gradio
|
| 25 |
+
# Pour simplifier, on mappe tout sur Text pour l'instant ou on utilise les strings directs
|
| 26 |
+
# TODO: Améliorer le mapping des types
|
| 27 |
+
|
| 28 |
+
# Construction du code
|
| 29 |
+
template = f"""
|
| 30 |
+
import gradio as gr
|
| 31 |
+
import json
|
| 32 |
+
|
| 33 |
+
# --- User Defined Logic ---
|
| 34 |
+
{function_code}
|
| 35 |
+
|
| 36 |
+
# --- Gradio Interface ---
|
| 37 |
+
|
| 38 |
+
# Wrapper pour gérer les types si nécessaire
|
| 39 |
+
def wrapper(*args):
|
| 40 |
+
result = {func_name}(*args)
|
| 41 |
+
return str(result) # Force string output for simplicity
|
| 42 |
+
|
| 43 |
+
# Configuration des inputs Gradio
|
| 44 |
+
# Note: Cette partie est générique pour le MVP.
|
| 45 |
+
# Idéalement, on itère sur 'inputs' pour créer les composants Gradio correspondants.
|
| 46 |
+
|
| 47 |
+
iface = gr.Interface(
|
| 48 |
+
fn=wrapper,
|
| 49 |
+
inputs=[gr.Textbox(label=k) for k in {list(inputs.keys())}],
|
| 50 |
+
outputs=gr.Textbox(label="{output_desc}"),
|
| 51 |
+
title="Meta-MCP Generated Tool",
|
| 52 |
+
description="Auto-generated by Meta-MCP Fractal"
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
if __name__ == "__main__":
|
| 56 |
+
iface.launch(mcp_server=True, show_error=True)
|
| 57 |
+
"""
|
| 58 |
+
return textwrap.dedent(template).strip()
|
| 59 |
+
|
| 60 |
+
@staticmethod
|
| 61 |
+
def generate_tool_module(function_code: str, inputs: dict, output_desc: str, tool_name: str) -> str:
|
| 62 |
+
"""
|
| 63 |
+
Génère un module Python contenant la logique de l'outil et une factory d'interface.
|
| 64 |
+
Destiné à être placé dans le dossier 'tools/'.
|
| 65 |
+
"""
|
| 66 |
+
import re
|
| 67 |
+
match = re.search(r"def\s+([a-zA-Z_][a-zA-Z0-9_]*)\s*\(", function_code)
|
| 68 |
+
func_name = match.group(1) if match else "main_function"
|
| 69 |
+
|
| 70 |
+
template = f"""
|
| 71 |
+
import gradio as gr
|
| 72 |
+
import json
|
| 73 |
+
|
| 74 |
+
# --- User Defined Logic ---
|
| 75 |
+
{function_code}
|
| 76 |
+
|
| 77 |
+
# --- Interface Factory ---
|
| 78 |
+
def create_interface():
|
| 79 |
+
# On utilise directement la fonction utilisateur pour préserver la signature et la docstring
|
| 80 |
+
# Cela permet à Gradio de générer une documentation MCP correcte.
|
| 81 |
+
return gr.Interface(
|
| 82 |
+
fn={func_name},
|
| 83 |
+
inputs=[gr.Textbox(label=k) for k in {list(inputs.keys())}],
|
| 84 |
+
outputs=gr.Textbox(label="{output_desc}"),
|
| 85 |
+
title="{tool_name}",
|
| 86 |
+
description="Auto-generated tool: {tool_name}"
|
| 87 |
+
)
|
| 88 |
+
"""
|
| 89 |
+
return textwrap.dedent(template).strip()
|
| 90 |
+
|
| 91 |
+
@staticmethod
|
| 92 |
+
def generate_master_app() -> str:
|
| 93 |
+
"""
|
| 94 |
+
Génère le fichier app.py principal.
|
| 95 |
+
Utilise une approche standard avec import dynamique simple.
|
| 96 |
+
"""
|
| 97 |
+
template = """
|
| 98 |
+
import gradio as gr
|
| 99 |
+
import os
|
| 100 |
+
import sys
|
| 101 |
+
import importlib
|
| 102 |
+
|
| 103 |
+
# Configuration
|
| 104 |
+
TOOLS_DIR = "tools"
|
| 105 |
+
|
| 106 |
+
# S'assurer que le dossier tools existe et est un package
|
| 107 |
+
if not os.path.exists(TOOLS_DIR):
|
| 108 |
+
os.makedirs(TOOLS_DIR, exist_ok=True)
|
| 109 |
+
with open(os.path.join(TOOLS_DIR, "__init__.py"), "w") as f:
|
| 110 |
+
pass
|
| 111 |
+
|
| 112 |
+
# Ajouter le répertoire courant au path pour que 'import tools.xxx' fonctionne
|
| 113 |
+
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
| 114 |
+
|
| 115 |
+
interfaces = []
|
| 116 |
+
names = []
|
| 117 |
+
|
| 118 |
+
print(f"🚀 Starting Meta-MCP Toolbox...")
|
| 119 |
+
print(f"📂 Scanning '{TOOLS_DIR}' directory...")
|
| 120 |
+
|
| 121 |
+
# Scan et import des outils
|
| 122 |
+
try:
|
| 123 |
+
for filename in sorted(os.listdir(TOOLS_DIR)):
|
| 124 |
+
if filename.endswith(".py") and not filename.startswith("_"):
|
| 125 |
+
module_name = filename[:-3]
|
| 126 |
+
full_module_name = f"{TOOLS_DIR}.{module_name}"
|
| 127 |
+
|
| 128 |
+
try:
|
| 129 |
+
print(f" 👉 Importing {full_module_name}...")
|
| 130 |
+
# Import dynamique standard
|
| 131 |
+
# On utilise reload pour être sûr de prendre la dernière version si redémarrage
|
| 132 |
+
module = importlib.import_module(full_module_name)
|
| 133 |
+
importlib.reload(module)
|
| 134 |
+
|
| 135 |
+
if hasattr(module, "create_interface"):
|
| 136 |
+
# Création de l'interface Gradio pour cet outil
|
| 137 |
+
tool_interface = module.create_interface()
|
| 138 |
+
interfaces.append(tool_interface)
|
| 139 |
+
names.append(module_name)
|
| 140 |
+
print(f" ✅ Loaded {module_name}")
|
| 141 |
+
else:
|
| 142 |
+
print(f" ⚠️ Module {module_name} has no create_interface()")
|
| 143 |
+
except Exception as e:
|
| 144 |
+
print(f" ❌ Error loading {module_name}: {e}")
|
| 145 |
+
import traceback
|
| 146 |
+
traceback.print_exc()
|
| 147 |
+
|
| 148 |
+
except Exception as e:
|
| 149 |
+
print(f"Error scanning tools directory: {e}")
|
| 150 |
+
|
| 151 |
+
# Construction de l'interface finale
|
| 152 |
+
if not interfaces:
|
| 153 |
+
demo = gr.Interface(
|
| 154 |
+
fn=lambda x: "No tools loaded yet. Add a tool via Meta-MCP!",
|
| 155 |
+
inputs="text",
|
| 156 |
+
outputs="text",
|
| 157 |
+
title="Empty Toolbox",
|
| 158 |
+
description="This Space is ready to receive tools."
|
| 159 |
+
)
|
| 160 |
+
else:
|
| 161 |
+
demo = gr.TabbedInterface(interfaces, names)
|
| 162 |
+
|
| 163 |
+
if __name__ == "__main__":
|
| 164 |
+
demo.launch(mcp_server=True, show_error=True)
|
| 165 |
+
"""
|
| 166 |
+
return textwrap.dedent(template).strip()
|
| 167 |
+
|
| 168 |
+
@staticmethod
|
| 169 |
+
def generate_mcp_server_code(function_code: str) -> str:
|
| 170 |
+
"""
|
| 171 |
+
Génère un serveur MCP (FastMCP) au lieu de Gradio (Future feature).
|
| 172 |
+
"""
|
| 173 |
+
pass
|
src/core/builder/proposal_generator.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
from huggingface_hub import InferenceClient
|
| 4 |
+
|
| 5 |
+
class ProposalGenerator:
|
| 6 |
+
def __init__(self):
|
| 7 |
+
self.token = os.environ.get("HF_TOKEN")
|
| 8 |
+
# Client par défaut
|
| 9 |
+
self.client = InferenceClient(token=self.token)
|
| 10 |
+
|
| 11 |
+
def generate_from_description(self, project_name: str, description: str, model: str = "Qwen/Qwen2.5-Coder-32B-Instruct", provider: str = None):
|
| 12 |
+
"""
|
| 13 |
+
Génère une proposition de code et de configuration à partir d'une description.
|
| 14 |
+
Utilise chat_completion pour une meilleure compatibilité.
|
| 15 |
+
"""
|
| 16 |
+
|
| 17 |
+
# Configuration dynamique du client si nécessaire (ex: changement de provider)
|
| 18 |
+
# Note: InferenceClient est léger, on peut l'instancier à la demande ou utiliser l'existant
|
| 19 |
+
# Si provider est spécifié, on l'utilise. Sinon on laisse HF choisir.
|
| 20 |
+
# "None" string from UI should be converted to None type
|
| 21 |
+
if provider == "None" or provider == "":
|
| 22 |
+
provider = None
|
| 23 |
+
|
| 24 |
+
print(f"🤖 Appel LLM avec Modèle: {model}, Provider: {provider}")
|
| 25 |
+
|
| 26 |
+
client = InferenceClient(model=model, token=self.token, provider=provider)
|
| 27 |
+
|
| 28 |
+
messages = [
|
| 29 |
+
{
|
| 30 |
+
"role": "system",
|
| 31 |
+
"content": """You are an expert Python developer creating a tool for an MCP server via Gradio.
|
| 32 |
+
Your goal is to generate production-ready Python code that is fully typed and documented.
|
| 33 |
+
You MUST return ONLY a valid JSON object."""
|
| 34 |
+
},
|
| 35 |
+
{
|
| 36 |
+
"role": "user",
|
| 37 |
+
"content": f"""Create a tool named '{project_name}' that does the following: {description}
|
| 38 |
+
|
| 39 |
+
Requirements:
|
| 40 |
+
1. The function MUST have a clear and descriptive docstring (Google style preferred) explaining what it does, its arguments, and its return value. This docstring will be used as the tool description for the LLM.
|
| 41 |
+
2. The function arguments MUST be fully typed (e.g. `word: str`, `count: int`).
|
| 42 |
+
3. The function return type MUST be specified (e.g. `-> str`).
|
| 43 |
+
4. The function name should match '{project_name}' (normalized to python snake_case).
|
| 44 |
+
5. If the code requires external libraries (like `requests`, `pandas`, `numpy`), list them.
|
| 45 |
+
|
| 46 |
+
Return ONLY a valid JSON object with the following structure:
|
| 47 |
+
{{
|
| 48 |
+
"python_code": "def function_name(arg1: type) -> type:\\n \\"\\"\\"Docstring here...\\"\\"\\"\\n ...",
|
| 49 |
+
"inputs": {{ "arg1": "Description for UI label" }},
|
| 50 |
+
"output_desc": "Description for UI label of the output",
|
| 51 |
+
"requirements": ["requests", "pandas"]
|
| 52 |
+
}}
|
| 53 |
+
|
| 54 |
+
Make sure the python_code is a valid, complete, standalone Python function with all necessary imports inside (e.g. `import requests` inside the function or at top level if compatible).
|
| 55 |
+
If the user provides an API Specification (Swagger/OpenAPI), generate a client function that implements the main operation described.
|
| 56 |
+
Do not use markdown formatting (no ```json). Just the raw JSON string.
|
| 57 |
+
"""
|
| 58 |
+
}
|
| 59 |
+
]
|
| 60 |
+
|
| 61 |
+
try:
|
| 62 |
+
response = client.chat_completion(
|
| 63 |
+
messages,
|
| 64 |
+
max_tokens=1024,
|
| 65 |
+
temperature=0.2,
|
| 66 |
+
stream=False
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# Extraction du contenu
|
| 70 |
+
content = response.choices[0].message.content.strip()
|
| 71 |
+
|
| 72 |
+
# Nettoyage basique pour extraire le JSON si le modèle bavarde un peu
|
| 73 |
+
if content.startswith("```json"):
|
| 74 |
+
content = content[7:]
|
| 75 |
+
elif content.startswith("```"):
|
| 76 |
+
content = content[3:]
|
| 77 |
+
if content.endswith("```"):
|
| 78 |
+
content = content[:-3]
|
| 79 |
+
|
| 80 |
+
return json.loads(content.strip())
|
| 81 |
+
|
| 82 |
+
except Exception as e:
|
| 83 |
+
print(f"Error generating proposal: {e}")
|
| 84 |
+
import traceback
|
| 85 |
+
traceback.print_exc()
|
| 86 |
+
# Fallback en cas d'erreur
|
| 87 |
+
return {
|
| 88 |
+
"python_code": f"# Error generating code: {str(e)}\n# Try changing the Inference Provider or Model.\ndef {project_name.replace('-', '_')}():\n return 'Error'",
|
| 89 |
+
"inputs": {},
|
| 90 |
+
"output_desc": "Error fallback"
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
# Singleton
|
| 94 |
+
proposal_generator = ProposalGenerator()
|
src/core/builder/reference_parser.py
ADDED
|
File without changes
|
src/core/deployer/huggingface.py
ADDED
|
@@ -0,0 +1,122 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
from typing import Dict, Optional
|
| 3 |
+
from huggingface_hub import HfApi, get_token
|
| 4 |
+
|
| 5 |
+
class HFDeployer:
|
| 6 |
+
def __init__(self, token: Optional[str] = None):
|
| 7 |
+
"""
|
| 8 |
+
Initialise le déployeur Hugging Face.
|
| 9 |
+
Si token est None, essaie de le récupérer depuis l'environnement HF_TOKEN
|
| 10 |
+
ou le cache local.
|
| 11 |
+
"""
|
| 12 |
+
self.token = token or os.environ.get("HF_TOKEN") or get_token()
|
| 13 |
+
if not self.token:
|
| 14 |
+
raise ValueError("Aucun token Hugging Face trouvé. Veuillez définir HF_TOKEN.")
|
| 15 |
+
|
| 16 |
+
self.api = HfApi(token=self.token)
|
| 17 |
+
|
| 18 |
+
def _sanitize_repo_id(self, input_name: str, current_username: str) -> str:
|
| 19 |
+
"""Nettoie le nom du repo/space pour gérer les URLs et les formats partiels."""
|
| 20 |
+
input_name = input_name.strip()
|
| 21 |
+
|
| 22 |
+
# Cas URL complète : https://huggingface.co/spaces/user/repo
|
| 23 |
+
if "huggingface.co" in input_name:
|
| 24 |
+
parts = input_name.split("huggingface.co/")
|
| 25 |
+
if len(parts) > 1:
|
| 26 |
+
path = parts[1]
|
| 27 |
+
# Retire 'spaces/' si présent
|
| 28 |
+
if path.startswith("spaces/"):
|
| 29 |
+
path = path[7:]
|
| 30 |
+
# Retire le slash final
|
| 31 |
+
return path.rstrip("/")
|
| 32 |
+
|
| 33 |
+
# Cas user/repo
|
| 34 |
+
if "/" in input_name:
|
| 35 |
+
return input_name
|
| 36 |
+
|
| 37 |
+
# Cas repo seul -> user/repo
|
| 38 |
+
return f"{current_username}/{input_name}"
|
| 39 |
+
|
| 40 |
+
def deploy_space(self,
|
| 41 |
+
space_name: str,
|
| 42 |
+
files: Dict[str, str],
|
| 43 |
+
username: Optional[str] = None,
|
| 44 |
+
sdk: str = "gradio",
|
| 45 |
+
private: bool = False) -> str:
|
| 46 |
+
"""
|
| 47 |
+
Crée un Space et déploie les fichiers.
|
| 48 |
+
|
| 49 |
+
Args:
|
| 50 |
+
space_name: Nom du space (ex: 'strawberry-counter')
|
| 51 |
+
files: Dictionnaire {nom_fichier: contenu} (ex: {'app.py': '...'})
|
| 52 |
+
username: Nom d'utilisateur ou organisation cible. Si None, utilise l'utilisateur courant.
|
| 53 |
+
sdk: 'gradio', 'streamlit', ou 'docker'
|
| 54 |
+
private: Si True, crée un repo privé
|
| 55 |
+
|
| 56 |
+
Returns:
|
| 57 |
+
L'URL du Space déployé.
|
| 58 |
+
"""
|
| 59 |
+
|
| 60 |
+
# 1. Déterminer le repo_id complet
|
| 61 |
+
if not username:
|
| 62 |
+
user_info = self.api.whoami()
|
| 63 |
+
username = user_info["name"]
|
| 64 |
+
|
| 65 |
+
# Utilisation de la méthode de nettoyage
|
| 66 |
+
repo_id = self._sanitize_repo_id(space_name, username)
|
| 67 |
+
|
| 68 |
+
print(f"🚀 Préparation du déploiement vers {repo_id}...")
|
| 69 |
+
|
| 70 |
+
# 2. Création du repo (idempotent: ne plante pas s'il existe déjà)
|
| 71 |
+
try:
|
| 72 |
+
self.api.create_repo(
|
| 73 |
+
repo_id=repo_id,
|
| 74 |
+
repo_type="space",
|
| 75 |
+
space_sdk=sdk,
|
| 76 |
+
private=private,
|
| 77 |
+
exist_ok=True
|
| 78 |
+
)
|
| 79 |
+
print(f"✅ Repo {repo_id} prêt.")
|
| 80 |
+
except Exception as e:
|
| 81 |
+
raise RuntimeError(f"Erreur lors de la création du repo: {str(e)}")
|
| 82 |
+
|
| 83 |
+
# 3. Upload des fichiers
|
| 84 |
+
operations = []
|
| 85 |
+
for filename, content in files.items():
|
| 86 |
+
# On encode le contenu en bytes pour l'upload
|
| 87 |
+
content_bytes = content.encode("utf-8")
|
| 88 |
+
operations.append(
|
| 89 |
+
self.api.run_as_future(
|
| 90 |
+
self.api.upload_file,
|
| 91 |
+
path_or_fileobj=content_bytes,
|
| 92 |
+
path_in_repo=filename,
|
| 93 |
+
repo_id=repo_id,
|
| 94 |
+
repo_type="space"
|
| 95 |
+
)
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Note: Pour simplifier ici on fait séquentiel ou on utilise upload_file direct.
|
| 99 |
+
# Pour un vrai batch, commit_operation serait mieux, mais upload_file est simple pour démarrer.
|
| 100 |
+
# Re-implémentation propre avec upload_file direct pour éviter complexité async pour l'instant
|
| 101 |
+
|
| 102 |
+
try:
|
| 103 |
+
for filename, content in files.items():
|
| 104 |
+
print(f"📤 Upload de {filename}...")
|
| 105 |
+
content_bytes = content.encode("utf-8")
|
| 106 |
+
self.api.upload_file(
|
| 107 |
+
path_or_fileobj=content_bytes,
|
| 108 |
+
path_in_repo=filename,
|
| 109 |
+
repo_id=repo_id,
|
| 110 |
+
repo_type="space",
|
| 111 |
+
commit_message=f"Deploy {filename} via Meta-MCP"
|
| 112 |
+
)
|
| 113 |
+
print("✅ Tous les fichiers ont été uploadés.")
|
| 114 |
+
except Exception as e:
|
| 115 |
+
raise RuntimeError(f"Erreur lors de l'upload des fichiers: {str(e)}")
|
| 116 |
+
|
| 117 |
+
# 4. Construction de l'URL
|
| 118 |
+
# L'URL standard est https://huggingface.co/spaces/USERNAME/SPACE_NAME
|
| 119 |
+
space_url = f"https://huggingface.co/spaces/{repo_id}"
|
| 120 |
+
|
| 121 |
+
print(f"🎉 Déploiement terminé ! Space accessible ici : {space_url}")
|
| 122 |
+
return space_url
|
src/core/security/sandboxing.py
ADDED
|
File without changes
|
src/core/security/validation.py
ADDED
|
File without changes
|
src/core/state/session_manager.py
ADDED
|
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import uuid
|
| 2 |
+
from typing import Dict, Any, Optional
|
| 3 |
+
from dataclasses import dataclass, field
|
| 4 |
+
from datetime import datetime
|
| 5 |
+
|
| 6 |
+
@dataclass
|
| 7 |
+
class ProjectDraft:
|
| 8 |
+
draft_id: str
|
| 9 |
+
name: str
|
| 10 |
+
description: str
|
| 11 |
+
type: str
|
| 12 |
+
created_at: datetime = field(default_factory=datetime.now)
|
| 13 |
+
code_files: Dict[str, str] = field(default_factory=dict)
|
| 14 |
+
metadata: Dict[str, Any] = field(default_factory=dict)
|
| 15 |
+
|
| 16 |
+
class SessionManager:
|
| 17 |
+
def __init__(self):
|
| 18 |
+
self._drafts: Dict[str, ProjectDraft] = {}
|
| 19 |
+
|
| 20 |
+
def create_draft(self, name: str, description: str, type: str = "adhoc") -> ProjectDraft:
|
| 21 |
+
"""Crée un nouveau brouillon de projet."""
|
| 22 |
+
draft_id = str(uuid.uuid4())
|
| 23 |
+
draft = ProjectDraft(
|
| 24 |
+
draft_id=draft_id,
|
| 25 |
+
name=name,
|
| 26 |
+
description=description,
|
| 27 |
+
type=type
|
| 28 |
+
)
|
| 29 |
+
# Initialisation des fichiers de base
|
| 30 |
+
draft.code_files["requirements.txt"] = "mcp"
|
| 31 |
+
|
| 32 |
+
self._drafts[draft_id] = draft
|
| 33 |
+
return draft
|
| 34 |
+
|
| 35 |
+
def get_draft(self, draft_id: str) -> Optional[ProjectDraft]:
|
| 36 |
+
"""Récupère un brouillon par son ID."""
|
| 37 |
+
return self._drafts.get(draft_id)
|
| 38 |
+
|
| 39 |
+
def update_code(self, draft_id: str, filename: str, content: str) -> bool:
|
| 40 |
+
"""Met à jour un fichier de code dans le brouillon."""
|
| 41 |
+
draft = self.get_draft(draft_id)
|
| 42 |
+
if not draft:
|
| 43 |
+
return False
|
| 44 |
+
draft.code_files[filename] = content
|
| 45 |
+
return True
|
| 46 |
+
|
| 47 |
+
def list_drafts(self) -> Dict[str, str]:
|
| 48 |
+
"""Liste tous les brouillons actifs."""
|
| 49 |
+
return {d.draft_id: d.name for d in self._drafts.values()}
|
src/mcp_server/playground.py
ADDED
|
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import io
|
| 4 |
+
import re
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from contextlib import redirect_stdout
|
| 8 |
+
from smolagents import InferenceClientModel, CodeAgent, Tool
|
| 9 |
+
|
| 10 |
+
def remove_ansi_codes(text):
|
| 11 |
+
"""Supprime les codes d'échappement ANSI (couleurs) du texte."""
|
| 12 |
+
ansi_escape = re.compile(r'\x1B(?:[@-Z\\-_]|\[[0-?]*[ -/]*[@-~])')
|
| 13 |
+
return ansi_escape.sub('', text)
|
| 14 |
+
|
| 15 |
+
# Note: MCPClient n'est peut-être pas exposé directement par smolagents dans toutes les versions.
|
| 16 |
+
# Si l'import échoue, il faudra peut-être utiliser une approche différente ou vérifier la version.
|
| 17 |
+
# L'utilisateur a fourni `from smolagents import ..., MCPClient`, donc on suit cette voie.
|
| 18 |
+
try:
|
| 19 |
+
from smolagents import MCPClient
|
| 20 |
+
except ImportError:
|
| 21 |
+
# Fallback ou mock si MCPClient n'est pas encore dans la version installée
|
| 22 |
+
# Pour l'instant on assume que c'est bon comme demandé par l'user
|
| 23 |
+
MCPClient = None
|
| 24 |
+
|
| 25 |
+
class PlaygroundManager:
|
| 26 |
+
def __init__(self):
|
| 27 |
+
self.agent = None
|
| 28 |
+
self.tools = []
|
| 29 |
+
self.mcp_client = None
|
| 30 |
+
|
| 31 |
+
def load_mcp_tools(self, mcp_url: str):
|
| 32 |
+
"""Connecte le client MCP à l'URL donnée et charge les outils."""
|
| 33 |
+
try:
|
| 34 |
+
# Nettoyage de l'ancien client
|
| 35 |
+
if self.mcp_client:
|
| 36 |
+
# self.mcp_client.disconnect() # Si méthode existe
|
| 37 |
+
pass
|
| 38 |
+
|
| 39 |
+
# Initialisation du client MCP
|
| 40 |
+
# L'utilisateur a demandé d'ignorer le mode SSE et d'utiliser HTTP streamable
|
| 41 |
+
# On nettoie l'URL si elle contient encore /sse par erreur
|
| 42 |
+
if mcp_url.endswith("/sse"):
|
| 43 |
+
mcp_url = mcp_url[:-4]
|
| 44 |
+
|
| 45 |
+
# On passe l'URL sans forcer le transport SSE, smolagents devrait gérer
|
| 46 |
+
# Note: On passe l'URL directement si possible, ou dans un dict selon l'API
|
| 47 |
+
# structured_output=False pour éviter le FutureWarning et rester compatible
|
| 48 |
+
self.mcp_client = MCPClient({"url": mcp_url}, structured_output=False)
|
| 49 |
+
|
| 50 |
+
# Récupération des outils
|
| 51 |
+
self.tools = self.mcp_client.get_tools()
|
| 52 |
+
|
| 53 |
+
# Configuration de l'agent
|
| 54 |
+
# On utilise HF_TOKEN pour le modèle d'inférence
|
| 55 |
+
token = os.environ.get("HF_TOKEN")
|
| 56 |
+
if not token:
|
| 57 |
+
return pd.DataFrame({"Error": ["HF_TOKEN env var is missing"]}), "Error: HF_TOKEN missing"
|
| 58 |
+
|
| 59 |
+
model = InferenceClientModel(token=token)
|
| 60 |
+
self.agent = CodeAgent(tools=self.tools, model=model)
|
| 61 |
+
|
| 62 |
+
# Création du DataFrame pour l'affichage
|
| 63 |
+
rows = []
|
| 64 |
+
for tool in self.tools:
|
| 65 |
+
# Gestion simplifiée des inputs pour l'affichage
|
| 66 |
+
input_desc = str(tool.inputs) if hasattr(tool, 'inputs') else "N/A"
|
| 67 |
+
rows.append({
|
| 68 |
+
"Tool name": tool.name,
|
| 69 |
+
"Description": tool.description,
|
| 70 |
+
"Params": input_desc
|
| 71 |
+
})
|
| 72 |
+
|
| 73 |
+
df = pd.DataFrame(rows)
|
| 74 |
+
return df, f"Succès ! {len(self.tools)} outils chargés depuis {mcp_url}"
|
| 75 |
+
|
| 76 |
+
except Exception as e:
|
| 77 |
+
import traceback
|
| 78 |
+
traceback.print_exc()
|
| 79 |
+
return pd.DataFrame({"Error": [str(e)]}), f"Erreur de connexion: {str(e)}"
|
| 80 |
+
|
| 81 |
+
def chat(self, message: str, history: list):
|
| 82 |
+
"""Exécute le message utilisateur via l'agent en capturant la réflexion."""
|
| 83 |
+
if not self.agent:
|
| 84 |
+
return "⚠️ Veuillez d'abord charger un serveur MCP valide."
|
| 85 |
+
|
| 86 |
+
# Capture de la sortie standard (logs de réflexion de smolagents)
|
| 87 |
+
f = io.StringIO()
|
| 88 |
+
try:
|
| 89 |
+
with redirect_stdout(f):
|
| 90 |
+
# L'agent smolagents s'exécute
|
| 91 |
+
# Note: Le streaming réel de la réflexion nécessiterait une intégration plus profonde avec smolagents
|
| 92 |
+
response = self.agent.run(message)
|
| 93 |
+
|
| 94 |
+
# Nettoyage des logs (suppression des couleurs ANSI qui cassent le Markdown)
|
| 95 |
+
raw_logs = f.getvalue()
|
| 96 |
+
clean_logs = remove_ansi_codes(raw_logs)
|
| 97 |
+
|
| 98 |
+
# Formatage de la réponse avec les logs de réflexion nettoyés
|
| 99 |
+
if clean_logs:
|
| 100 |
+
formatted_response = f"**💭 Réflexion de l'agent :**\n```text\n{clean_logs}\n```\n\n**✅ Réponse :**\n{str(response)}"
|
| 101 |
+
else:
|
| 102 |
+
formatted_response = str(response)
|
| 103 |
+
|
| 104 |
+
return formatted_response
|
| 105 |
+
|
| 106 |
+
except Exception as e:
|
| 107 |
+
raw_logs = f.getvalue()
|
| 108 |
+
clean_logs = remove_ansi_codes(raw_logs)
|
| 109 |
+
return f"Erreur lors de l'exécution de l'agent: {str(e)}\n\nLogs partiels:\n{clean_logs}"
|
| 110 |
+
|
| 111 |
+
# Singleton pour gérer l'état du playground dans l'instance Gradio
|
| 112 |
+
# Attention: Dans un vrai déploiement multi-utilisateurs, l'état devrait être géré par gr.State
|
| 113 |
+
playground = PlaygroundManager()
|
| 114 |
+
|
| 115 |
+
def get_playground_ui_handlers():
|
| 116 |
+
"""Retourne les fonctions wrappers pour l'UI Gradio."""
|
| 117 |
+
|
| 118 |
+
def reload_tools(url):
|
| 119 |
+
return playground.load_mcp_tools(url)
|
| 120 |
+
|
| 121 |
+
def chat_response(message, history):
|
| 122 |
+
return playground.chat(message, history)
|
| 123 |
+
|
| 124 |
+
return reload_tools, chat_response
|
src/mcp_server/server.py
ADDED
|
@@ -0,0 +1,277 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import sys
|
| 4 |
+
|
| 5 |
+
# Ajout du répertoire racine au path pour permettre les imports absolus 'src.xxx'
|
| 6 |
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")))
|
| 7 |
+
|
| 8 |
+
from src.mcp_server import tools
|
| 9 |
+
from src.mcp_server.playground import get_playground_ui_handlers
|
| 10 |
+
from src.core.builder.proposal_generator import proposal_generator
|
| 11 |
+
|
| 12 |
+
# --- Wrappers pour Gradio UI ---
|
| 13 |
+
# Ces wrappers permettent d'avoir une UI conviviale tout en exposant les fonctions via MCP
|
| 14 |
+
|
| 15 |
+
def init_and_propose_ui(project_name, description, type, model_id, provider_id):
|
| 16 |
+
"""
|
| 17 |
+
Step 1 (Initialization): Starts a new tool project and uses AI to propose code.
|
| 18 |
+
|
| 19 |
+
This is the entry point for creating a new MCP tool. It returns a draft_id and a code proposal based on the description.
|
| 20 |
+
|
| 21 |
+
Args:
|
| 22 |
+
project_name: The technical name of the tool (e.g., 'weather-fetcher').
|
| 23 |
+
description: A natural language description of what the tool should do, or a raw Swagger/OpenAPI JSON specification.
|
| 24 |
+
type: The type of tool pattern (e.g., 'adhoc' for custom logic, 'api_wrapper' for REST clients).
|
| 25 |
+
model_id: The LLM model to use for code generation (default: Qwen/Qwen2.5-Coder-32B-Instruct).
|
| 26 |
+
provider_id: The inference provider to use (optional, e.g. 'together', 'fal-ai').
|
| 27 |
+
"""
|
| 28 |
+
# 1. Initialisation du projet
|
| 29 |
+
init_result = tools.init_project(project_name, description, type)
|
| 30 |
+
draft_id = init_result.get("draft_id", "")
|
| 31 |
+
|
| 32 |
+
# 2. Génération de la proposition par LLM
|
| 33 |
+
print(f"🤖 Génération de la proposition pour : {project_name} (Model: {model_id}, Provider: {provider_id})...")
|
| 34 |
+
proposal = proposal_generator.generate_from_description(project_name, description, model=model_id, provider=provider_id)
|
| 35 |
+
|
| 36 |
+
# 3. Retourne les données pour mettre à jour l'UI
|
| 37 |
+
# Gère le cas où 'requirements' n'est pas renvoyé par le LLM
|
| 38 |
+
reqs = proposal.get("requirements", [])
|
| 39 |
+
|
| 40 |
+
return (
|
| 41 |
+
init_result, # out_init (JSON)
|
| 42 |
+
draft_id, # draft_id_logic (Textbox)
|
| 43 |
+
proposal["python_code"], # python_code (Code)
|
| 44 |
+
proposal["inputs"], # inputs_dict (JSON)
|
| 45 |
+
proposal["output_desc"], # output_desc (Textbox)
|
| 46 |
+
reqs # requirements_box (JSON/List)
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
def define_logic_ui(draft_id, python_code, inputs, output_desc, requirements):
|
| 50 |
+
"""
|
| 51 |
+
Step 2 (Logic Definition): Validates and saves the tool code.
|
| 52 |
+
|
| 53 |
+
Call this AFTER `init_and_propose_ui`. It saves the Python implementation into the draft before deployment.
|
| 54 |
+
|
| 55 |
+
Args:
|
| 56 |
+
draft_id: The unique ID of the project draft (returned by Step 1).
|
| 57 |
+
python_code: The complete Python source code for the tool function.
|
| 58 |
+
inputs: A dictionary describing the input parameters (e.g. {"city": "Name of the city"}).
|
| 59 |
+
output_desc: A description of what the tool returns.
|
| 60 |
+
requirements: A list of Python dependencies (pip packages) required by the code (e.g. ["requests", "pandas"]).
|
| 61 |
+
"""
|
| 62 |
+
# inputs est reçu comme un dictionnaire (via gr.JSON)
|
| 63 |
+
result = tools.define_logic(draft_id, python_code, inputs, output_desc, requirements)
|
| 64 |
+
return result
|
| 65 |
+
|
| 66 |
+
def deploy_to_space_ui(draft_id, visibility, space_target, target_space_name):
|
| 67 |
+
"""
|
| 68 |
+
Step 3 (Deployment): Deploys the tool to a Hugging Face Space.
|
| 69 |
+
|
| 70 |
+
Call this AFTER `define_logic_ui`. It creates or updates a Space with the tool's code.
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
draft_id: The unique ID of the project draft (from Step 1).
|
| 74 |
+
visibility: The visibility of the deployed Space ('public' or 'private').
|
| 75 |
+
space_target: Deployment strategy. 'new' creates a dedicated Space (Toolbox), 'existing' adds the tool to an existing Toolbox Space.
|
| 76 |
+
target_space_name: The name of the target Space. Required if space_target='existing'. Optional for 'new' (defaults to project name).
|
| 77 |
+
"""
|
| 78 |
+
result = tools.deploy_to_space(draft_id, visibility, space_target, target_space_name)
|
| 79 |
+
return result
|
| 80 |
+
|
| 81 |
+
# Récupération des handlers du playground
|
| 82 |
+
reload_tools_handler, chat_response_handler = get_playground_ui_handlers()
|
| 83 |
+
|
| 84 |
+
# --- Exposition des outils MCP (API pure) ---
|
| 85 |
+
# Ces fonctions sont exposées directement aux LLMs via MCP, en plus de l'UI
|
| 86 |
+
|
| 87 |
+
def mcp_propose_implementation(project_name: str, description: str):
|
| 88 |
+
"""
|
| 89 |
+
[AI Assistant Only] Generates a Python implementation proposal without initializing a UI draft.
|
| 90 |
+
|
| 91 |
+
Use this tool if you are an AI agent wanting to generate code from a spec before deciding to create a draft.
|
| 92 |
+
|
| 93 |
+
Args:
|
| 94 |
+
project_name: Name of the intended tool.
|
| 95 |
+
description: The tool description or Swagger/OpenAPI specification.
|
| 96 |
+
"""
|
| 97 |
+
return tools.propose_implementation(project_name, description)
|
| 98 |
+
|
| 99 |
+
# --- Construction de l'interface ---
|
| 100 |
+
|
| 101 |
+
with gr.Blocks(title="Meta-MCP Fractal") as demo:
|
| 102 |
+
gr.Markdown("# 🏭 Méta-MCP Fractal Factory")
|
| 103 |
+
gr.Markdown("Ce serveur permet de créer et déployer d'autres serveurs MCP sur Hugging Face Spaces.")
|
| 104 |
+
|
| 105 |
+
with gr.Tab("1. Initialisation"):
|
| 106 |
+
gr.Markdown("Commencez par initialiser un nouveau projet.")
|
| 107 |
+
|
| 108 |
+
project_name = gr.Textbox(label="Nom du projet (ex: strawberry-counter, ratp-api-client)")
|
| 109 |
+
|
| 110 |
+
project_desc = gr.Textbox(
|
| 111 |
+
label="Description de l'outil ou Spécification (Swagger/OpenAPI JSON)",
|
| 112 |
+
lines=10,
|
| 113 |
+
placeholder="Décrivez ce que doit faire l'outil, ou collez ici le contenu d'un fichier swagger.json pour générer un client API automatiquement."
|
| 114 |
+
)
|
| 115 |
+
|
| 116 |
+
with gr.Row():
|
| 117 |
+
project_type = gr.Dropdown(choices=["adhoc", "api_wrapper"], value="adhoc", label="Type")
|
| 118 |
+
|
| 119 |
+
with gr.Accordion("Paramètres IA (Avancé)", open=False):
|
| 120 |
+
model_id = gr.Textbox(label="Modèle LLM", value="Qwen/Qwen2.5-Coder-32B-Instruct")
|
| 121 |
+
provider_id = gr.Dropdown(
|
| 122 |
+
label="Provider d'Inférence",
|
| 123 |
+
choices=["None", "together", "fal-ai", "replicate", "sambanova", "hyperbolic"],
|
| 124 |
+
value="None",
|
| 125 |
+
info="Sélectionnez un provider spécifique si 'None' (auto) échoue."
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
btn_init = gr.Button("Initialiser le projet & Générer le code (IA)")
|
| 129 |
+
out_init = gr.JSON(label="Résultat (Copiez le draft_id)")
|
| 130 |
+
|
| 131 |
+
|
| 132 |
+
with gr.Tab("2. Définition de la logique"):
|
| 133 |
+
gr.Markdown("Définissez le code Python et l'interface de votre outil.")
|
| 134 |
+
with gr.Row():
|
| 135 |
+
draft_id_logic = gr.Textbox(label="Draft ID")
|
| 136 |
+
python_code = gr.Code(language="python", label="Code Python (ex: def count_r(word): ...)")
|
| 137 |
+
|
| 138 |
+
with gr.Row():
|
| 139 |
+
inputs_dict = gr.JSON(label="Inputs (ex: {'word': 'text'})", value={"word": "text"})
|
| 140 |
+
output_desc = gr.Textbox(label="Description de la sortie")
|
| 141 |
+
|
| 142 |
+
requirements_box = gr.JSON(label="Requirements (Pip packages)", value=[])
|
| 143 |
+
|
| 144 |
+
btn_logic = gr.Button("Générer le code")
|
| 145 |
+
out_logic = gr.JSON(label="Résultat")
|
| 146 |
+
|
| 147 |
+
btn_logic.click(define_logic_ui, inputs=[draft_id_logic, python_code, inputs_dict, output_desc, requirements_box], outputs=out_logic)
|
| 148 |
+
|
| 149 |
+
with gr.Tab("3. Déploiement"):
|
| 150 |
+
gr.Markdown("Déployez votre outil sur Hugging Face Spaces.")
|
| 151 |
+
with gr.Row():
|
| 152 |
+
draft_id_deploy = gr.Textbox(label="Draft ID")
|
| 153 |
+
visibility = gr.Dropdown(choices=["public", "private"], value="public", label="Visibilité")
|
| 154 |
+
|
| 155 |
+
gr.Markdown("---")
|
| 156 |
+
gr.Markdown("### 🎯 Cible du déploiement")
|
| 157 |
+
|
| 158 |
+
with gr.Row():
|
| 159 |
+
space_target = gr.Radio(
|
| 160 |
+
choices=["new", "existing"],
|
| 161 |
+
value="new",
|
| 162 |
+
label="Mode de déploiement",
|
| 163 |
+
info="Choisissez si vous créez une nouvelle Toolbox ou si vous enrichissez une existante."
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# Ce champ sert pour les deux cas : soit pour nommer la nouvelle toolbox, soit pour cibler l'existante
|
| 167 |
+
target_space_name = gr.Textbox(
|
| 168 |
+
label="Nom du Space Cible",
|
| 169 |
+
placeholder="Laissez vide pour utiliser le nom du projet, ou saisissez un nom (ex: ma-toolbox)",
|
| 170 |
+
visible=True,
|
| 171 |
+
info="Si 'new' : Nom de la nouvelle Toolbox (facultatif). Si 'existing' : Nom du Space à mettre à jour (obligatoire)."
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# Petit helper pour changer le label/placeholder selon le mode (UX improvement)
|
| 175 |
+
def update_space_field(target):
|
| 176 |
+
if target == "new":
|
| 177 |
+
return gr.update(
|
| 178 |
+
label="Nom de la nouvelle Toolbox (Optionnel)",
|
| 179 |
+
placeholder="Laissez vide pour utiliser le nom du projet (ex: strawberry-counter)"
|
| 180 |
+
)
|
| 181 |
+
else:
|
| 182 |
+
return gr.update(
|
| 183 |
+
label="Nom du Space Existant (Obligatoire)",
|
| 184 |
+
placeholder="ex: username/my-toolbox"
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
+
space_target.change(fn=update_space_field, inputs=space_target, outputs=target_space_name)
|
| 188 |
+
|
| 189 |
+
btn_deploy = gr.Button("Déployer sur Spaces", variant="primary")
|
| 190 |
+
out_deploy = gr.JSON(label="Résultat du déploiement")
|
| 191 |
+
|
| 192 |
+
btn_deploy.click(
|
| 193 |
+
deploy_to_space_ui,
|
| 194 |
+
inputs=[draft_id_deploy, visibility, space_target, target_space_name],
|
| 195 |
+
outputs=out_deploy
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
# Câblage global des événements (une fois tous les composants définis)
|
| 199 |
+
# 1. Init -> Remplissage auto de l'onglet 2 (Logic) et copie de l'ID vers onglet 3 (Deploy)
|
| 200 |
+
btn_init.click(
|
| 201 |
+
init_and_propose_ui,
|
| 202 |
+
inputs=[project_name, project_desc, project_type, model_id, provider_id],
|
| 203 |
+
outputs=[out_init, draft_id_logic, python_code, inputs_dict, output_desc, requirements_box]
|
| 204 |
+
).then(
|
| 205 |
+
fn=lambda x: x,
|
| 206 |
+
inputs=[draft_id_logic],
|
| 207 |
+
outputs=[draft_id_deploy]
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
with gr.Tab("4. Test & Playground (Smolagents)"):
|
| 211 |
+
gr.Markdown("Testez immédiatement votre serveur MCP déployé.")
|
| 212 |
+
|
| 213 |
+
with gr.Row():
|
| 214 |
+
mcp_url_input = gr.Textbox(
|
| 215 |
+
label="URL du Serveur MCP",
|
| 216 |
+
placeholder="ex: https://votre-user-votre-space.hf.space/gradio_api/mcp/sse",
|
| 217 |
+
scale=3
|
| 218 |
+
)
|
| 219 |
+
btn_reload = gr.Button("🔄 Charger les outils", scale=1)
|
| 220 |
+
|
| 221 |
+
status_msg = gr.Markdown("")
|
| 222 |
+
tool_table = gr.DataFrame(headers=["Tool name", "Description", "Params"], label="Outils détectés")
|
| 223 |
+
|
| 224 |
+
gr.Markdown("### 🤖 Discutez avec votre Agent MCP")
|
| 225 |
+
chatbot = gr.ChatInterface(
|
| 226 |
+
fn=chat_response_handler
|
| 227 |
+
)
|
| 228 |
+
|
| 229 |
+
btn_reload.click(
|
| 230 |
+
fn=reload_tools_handler,
|
| 231 |
+
inputs=[mcp_url_input],
|
| 232 |
+
outputs=[tool_table, status_msg]
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
# Exposition explicite des outils pour les agents MCP sans UI
|
| 236 |
+
# Cela permet à ChatGPT/Claude d'appeler ces fonctions directement
|
| 237 |
+
# Note: Les fonctions liées à l'UI sont déjà exposées, mais celles-ci sont plus propres pour une API.
|
| 238 |
+
# Gradio expose automatiquement les fonctions utilisées dans l'interface, mais on peut ajouter des endpoints API spécifiques.
|
| 239 |
+
# Cependant, avec mcp_server=True, Gradio expose TOUT ce qui est triggué.
|
| 240 |
+
# Pour être sûr que 'propose_implementation' est dispo, on l'ajoute via un composant invisible ou une API route si possible.
|
| 241 |
+
# Dans la version actuelle de Gradio MCP, seules les fonctions liées à des événements sont exposées.
|
| 242 |
+
# On va donc créer une "API Box" invisible pour exposer cet outil spécifique.
|
| 243 |
+
|
| 244 |
+
with gr.Accordion("API Tools (Invisible)", visible=False):
|
| 245 |
+
api_input_name = gr.Textbox()
|
| 246 |
+
api_input_desc = gr.Textbox()
|
| 247 |
+
api_output = gr.JSON()
|
| 248 |
+
|
| 249 |
+
btn_api_propose = gr.Button("Propose Implementation API")
|
| 250 |
+
btn_api_propose.click(
|
| 251 |
+
mcp_propose_implementation,
|
| 252 |
+
inputs=[api_input_name, api_input_desc],
|
| 253 |
+
outputs=[api_output],
|
| 254 |
+
api_name="propose_implementation" # Nom de l'outil pour le LLM
|
| 255 |
+
)
|
| 256 |
+
|
| 257 |
+
# --- Définition des Ressources et Prompts MCP ---
|
| 258 |
+
|
| 259 |
+
@gr.mcp.resource("list://drafts")
|
| 260 |
+
def list_active_drafts() -> str:
|
| 261 |
+
"""Returns a list of currently active project drafts."""
|
| 262 |
+
# Note: In a real app, this would query the session manager
|
| 263 |
+
return "Active Drafts: [draft_id_1, draft_id_2]"
|
| 264 |
+
|
| 265 |
+
@gr.mcp.prompt()
|
| 266 |
+
def help_create_tool(topic: str = "general") -> str:
|
| 267 |
+
"""
|
| 268 |
+
Provides a prompt template to help users create a new tool.
|
| 269 |
+
Args:
|
| 270 |
+
topic: The topic of the tool (e.g. 'data', 'fun', 'utility')
|
| 271 |
+
"""
|
| 272 |
+
return f"I want to create a new MCP tool related to {topic}. Can you guide me through the initialization, logic definition, and deployment steps using the available tools?"
|
| 273 |
+
|
| 274 |
+
# Point d'entrée
|
| 275 |
+
if __name__ == "__main__":
|
| 276 |
+
# Lancement avec mcp_server=True pour exposer les outils aux LLMs
|
| 277 |
+
demo.launch(mcp_server=True)
|
src/mcp_server/tools.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, Any
|
| 2 |
+
|
| 3 |
+
from src.core.state.session_manager import SessionManager
|
| 4 |
+
from src.core.builder.code_generator import CodeGenerator
|
| 5 |
+
from src.core.deployer.huggingface import HFDeployer
|
| 6 |
+
from src.core.builder.proposal_generator import proposal_generator
|
| 7 |
+
|
| 8 |
+
# Initialisation des singletons
|
| 9 |
+
session_manager = SessionManager()
|
| 10 |
+
# Note: HFDeployer est instancié à la demande pour avoir le token le plus à jour ou géré par contexte si besoin
|
| 11 |
+
# Pour l'instant on l'instancie à chaque déploiement.
|
| 12 |
+
|
| 13 |
+
def init_project(project_name: str, description: str, type: str = "adhoc") -> Dict[str, Any]:
|
| 14 |
+
"""
|
| 15 |
+
Crée un nouveau projet vide.
|
| 16 |
+
Args:
|
| 17 |
+
project_name: Nom technique (ex: strawberry-counter, ratp-api).
|
| 18 |
+
description: Description de l'outil, ou Spécification Technique complète (ex: contenu d'un Swagger/OpenAPI JSON).
|
| 19 |
+
type: 'adhoc' (code pur), 'api_wrapper' (REST).
|
| 20 |
+
Returns:
|
| 21 |
+
Un dictionnaire contenant le 'draft_id' nécessaire pour la suite.
|
| 22 |
+
"""
|
| 23 |
+
draft = session_manager.create_draft(project_name, description, type)
|
| 24 |
+
return {
|
| 25 |
+
"draft_id": draft.draft_id,
|
| 26 |
+
"config": {
|
| 27 |
+
"name": draft.name,
|
| 28 |
+
"description": draft.description,
|
| 29 |
+
"files": list(draft.code_files.keys())
|
| 30 |
+
},
|
| 31 |
+
"message": f"Projet '{project_name}' initialisé. Draft ID: {draft.draft_id}"
|
| 32 |
+
}
|
| 33 |
+
|
| 34 |
+
def propose_implementation(project_name: str, description: str) -> Dict[str, Any]:
|
| 35 |
+
"""
|
| 36 |
+
Utilise l'IA interne pour proposer une implémentation complète à partir d'une description ou d'un Swagger.
|
| 37 |
+
Args:
|
| 38 |
+
project_name: Le nom du projet.
|
| 39 |
+
description: La description ou le JSON Swagger/OpenAPI.
|
| 40 |
+
Returns:
|
| 41 |
+
Un dictionnaire contenant le code Python proposé, les inputs détectés et les requirements.
|
| 42 |
+
L'agent appelant peut ensuite valider ou modifier ce code avant d'appeler define_logic.
|
| 43 |
+
"""
|
| 44 |
+
try:
|
| 45 |
+
proposal = proposal_generator.generate_from_description(project_name, description)
|
| 46 |
+
return {
|
| 47 |
+
"status": "success",
|
| 48 |
+
"proposal": proposal,
|
| 49 |
+
"message": "Implémentation proposée. Veuillez réviser 'python_code' et 'requirements' avant d'appeler define_logic."
|
| 50 |
+
}
|
| 51 |
+
except Exception as e:
|
| 52 |
+
return {"error": f"Erreur lors de la génération: {str(e)}"}
|
| 53 |
+
|
| 54 |
+
def define_logic(draft_id: str, python_code: str, inputs: Dict[str, str], output_desc: str, requirements: str = "") -> Dict[str, Any]:
|
| 55 |
+
"""
|
| 56 |
+
Définit la logique interne de l'outil.
|
| 57 |
+
Génère à la fois le module modulaire et l'app maître.
|
| 58 |
+
"""
|
| 59 |
+
draft = session_manager.get_draft(draft_id)
|
| 60 |
+
if not draft:
|
| 61 |
+
return {"error": f"Draft {draft_id} introuvable."}
|
| 62 |
+
|
| 63 |
+
# 1. Génération du module de l'outil (ex: tools/strawberry_counter.py)
|
| 64 |
+
# On utilise le nom du projet comme nom de fichier (nettoyé)
|
| 65 |
+
tool_filename = draft.name.replace("-", "_").lower()
|
| 66 |
+
tool_module_code = CodeGenerator.generate_tool_module(python_code, inputs, output_desc, draft.name)
|
| 67 |
+
|
| 68 |
+
# 2. Génération de l'application maître (app.py)
|
| 69 |
+
master_app_code = CodeGenerator.generate_master_app()
|
| 70 |
+
|
| 71 |
+
# Sauvegarde dans le draft
|
| 72 |
+
# On place l'outil dans un sous-dossier 'tools'
|
| 73 |
+
session_manager.update_code(draft_id, f"tools/{tool_filename}.py", tool_module_code)
|
| 74 |
+
session_manager.update_code(draft_id, "tools/__init__.py", "") # Package marker
|
| 75 |
+
session_manager.update_code(draft_id, "app.py", master_app_code)
|
| 76 |
+
|
| 77 |
+
# Mise à jour des requirements
|
| 78 |
+
current_reqs = draft.code_files.get("requirements.txt", "")
|
| 79 |
+
new_reqs = current_reqs
|
| 80 |
+
|
| 81 |
+
# Ajout de gradio si manquant
|
| 82 |
+
if "gradio" not in new_reqs:
|
| 83 |
+
new_reqs += "\ngradio"
|
| 84 |
+
|
| 85 |
+
# Ajout des requirements spécifiques demandés par le LLM
|
| 86 |
+
if requirements:
|
| 87 |
+
# requirements peut être une liste ou une chaine (si via UI Textbox)
|
| 88 |
+
if isinstance(requirements, list):
|
| 89 |
+
req_list = requirements
|
| 90 |
+
else:
|
| 91 |
+
req_list = [r.strip() for r in requirements.split(",") if r.strip()]
|
| 92 |
+
|
| 93 |
+
for req in req_list:
|
| 94 |
+
if req and req not in new_reqs:
|
| 95 |
+
new_reqs += f"\n{req}"
|
| 96 |
+
|
| 97 |
+
draft.code_files["requirements.txt"] = new_reqs.strip()
|
| 98 |
+
|
| 99 |
+
return {
|
| 100 |
+
"status": "success",
|
| 101 |
+
"message": f"Logique générée pour '{draft.name}'. Prêt à déployer.",
|
| 102 |
+
"preview": tool_module_code[:200] + "..."
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
def deploy_to_space(draft_id: str, visibility: str = "public", space_target: str = "new", target_space_name: str = "") -> Dict[str, Any]:
|
| 106 |
+
"""
|
| 107 |
+
Déploie le projet sur Hugging Face Spaces.
|
| 108 |
+
Args:
|
| 109 |
+
draft_id: ID du draft.
|
| 110 |
+
visibility: 'public' ou 'private'.
|
| 111 |
+
space_target: 'new' (créer une nouvelle toolbox) ou 'existing' (ajouter à une toolbox existante).
|
| 112 |
+
target_space_name: Nom forcé du space cible (optionnel pour 'new', obligatoire pour 'existing').
|
| 113 |
+
"""
|
| 114 |
+
draft = session_manager.get_draft(draft_id)
|
| 115 |
+
if not draft:
|
| 116 |
+
return {"error": f"Draft {draft_id} introuvable."}
|
| 117 |
+
|
| 118 |
+
deployer = HFDeployer()
|
| 119 |
+
|
| 120 |
+
# Détermination du nom du Space cible
|
| 121 |
+
# Si target_space_name est vide, on utilise le nom du projet
|
| 122 |
+
final_space_name = target_space_name if target_space_name else draft.name
|
| 123 |
+
|
| 124 |
+
# Filtrage des fichiers à déployer
|
| 125 |
+
files_to_deploy = draft.code_files.copy()
|
| 126 |
+
|
| 127 |
+
# Si on ajoute à un space existant, on n'écrase pas le loader principal (app.py)
|
| 128 |
+
if space_target == "existing":
|
| 129 |
+
if "app.py" in files_to_deploy:
|
| 130 |
+
del files_to_deploy["app.py"]
|
| 131 |
+
# On garde requirements.txt ? Idéalement il faudrait merger.
|
| 132 |
+
# Pour simplifier, on l'enlève pour éviter d'écraser des déps existantes.
|
| 133 |
+
if "requirements.txt" in files_to_deploy:
|
| 134 |
+
del files_to_deploy["requirements.txt"]
|
| 135 |
+
|
| 136 |
+
try:
|
| 137 |
+
url = deployer.deploy_space(
|
| 138 |
+
space_name=final_space_name,
|
| 139 |
+
files=files_to_deploy,
|
| 140 |
+
sdk="gradio",
|
| 141 |
+
private=(visibility == "private")
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
mode_msg = "ajouté à la toolbox" if space_target == "existing" else "déployé (nouveau space)"
|
| 145 |
+
|
| 146 |
+
# URL standard MCP pour Gradio (sans /sse explicite, compatible Claude Desktop)
|
| 147 |
+
mcp_endpoint = url.rstrip("/") + "/gradio_api/mcp/"
|
| 148 |
+
claude_config = f"""
|
| 149 |
+
{{
|
| 150 |
+
"mcpServers": {{
|
| 151 |
+
"{draft.name}": {{
|
| 152 |
+
"url": "{mcp_endpoint}"
|
| 153 |
+
}}
|
| 154 |
+
}}
|
| 155 |
+
}}
|
| 156 |
+
"""
|
| 157 |
+
|
| 158 |
+
return {
|
| 159 |
+
"status": "success",
|
| 160 |
+
"url": url,
|
| 161 |
+
"instructions": f"Outil '{draft.name}' {mode_msg} !",
|
| 162 |
+
"claude_config": claude_config
|
| 163 |
+
}
|
| 164 |
+
except Exception as e:
|
| 165 |
+
return {"error": f"Erreur de déploiement: {str(e)}"}
|
tests/test_deploy.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
from dotenv import load_dotenv
|
| 4 |
+
|
| 5 |
+
# Ajout du dossier src au path pour pouvoir importer les modules
|
| 6 |
+
sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'src'))
|
| 7 |
+
|
| 8 |
+
from core.deployer.huggingface import HFDeployer
|
| 9 |
+
|
| 10 |
+
def test_deployment():
|
| 11 |
+
# Charger les variables d'environnement (pour HF_TOKEN)
|
| 12 |
+
load_dotenv()
|
| 13 |
+
|
| 14 |
+
token = os.environ.get("HF_TOKEN")
|
| 15 |
+
if not token:
|
| 16 |
+
print("❌ Erreur: HF_TOKEN manquant dans les variables d'environnement.")
|
| 17 |
+
print("Veuillez créer un fichier .env avec HF_TOKEN=votre_token_write")
|
| 18 |
+
return
|
| 19 |
+
|
| 20 |
+
print("🧪 Démarrage du test de déploiement...")
|
| 21 |
+
|
| 22 |
+
deployer = HFDeployer(token=token)
|
| 23 |
+
|
| 24 |
+
# Nom unique pour le test (avec timestamp pour éviter les conflits si possible,
|
| 25 |
+
# mais pour simplifier on utilise un nom fixe 'test-meta-mcp-hello' que l'utilisateur pourra supprimer)
|
| 26 |
+
space_name = "test-meta-mcp-hello"
|
| 27 |
+
|
| 28 |
+
# Code de l'application "Hello World"
|
| 29 |
+
app_code = """
|
| 30 |
+
import gradio as gr
|
| 31 |
+
|
| 32 |
+
def greet(name):
|
| 33 |
+
return "Hello " + name + " from Meta-MCP!"
|
| 34 |
+
|
| 35 |
+
iface = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 36 |
+
iface.launch()
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
files = {
|
| 40 |
+
"app.py": app_code,
|
| 41 |
+
"requirements.txt": "gradio"
|
| 42 |
+
}
|
| 43 |
+
|
| 44 |
+
try:
|
| 45 |
+
url = deployer.deploy_space(
|
| 46 |
+
space_name=space_name,
|
| 47 |
+
files=files,
|
| 48 |
+
sdk="gradio",
|
| 49 |
+
private=False
|
| 50 |
+
)
|
| 51 |
+
print(f"\n✅ Test réussi ! Space déployé sur : {url}")
|
| 52 |
+
print("⚠️ N'oubliez pas de supprimer ce Space manuellement si vous ne souhaitez pas le conserver.")
|
| 53 |
+
|
| 54 |
+
except Exception as e:
|
| 55 |
+
print(f"\n❌ Échec du test : {str(e)}")
|
| 56 |
+
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
test_deployment()
|