from transformers import AutoTokenizer, MarianMTModel import gradio as grad mdl_name = "Helsinki-NLP/opus-mt-zh-en" mdl = MarianMTModel.from_pretrained(mdl_name) my_tkn = AutoTokenizer.from_pretrained(mdl_name) #from transformers import AutoModelForSeq2SeqLM,AutoTokenizer #import gradio as grad #mdl_name = "Helsinki-NLP/opus-mt-zh-en" #mdl = AutoModelForSeq2SeqLM.from_pretrained(mdl_name) #my_tkn = AutoTokenizer.from_pretrained(mdl_name) #opus_translator = pipeline("translation", model=mdl_name) def translate(text): inputs = my_tkn(text, return_tensors="pt", truncation=True, max_length=512) trans_output = mdl.generate(**inputs) response = my_tkn.decode(trans_output[0], skip_special_tokens=True) #response = opus_translator(text) return response grad.Interface(translate, inputs=["text",], outputs="text").launch()