Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from pathlib import Path | |
| from transformers import pipeline | |
| base_path = str(Path(__file__).parent) | |
| default_text = "اجتياح رفح الفلسطينية أكبر جريمة إبادة فى التاريخ المعاصر" | |
| def loading_model_and_prediction(ner_text): | |
| # Replace this with your own checkpoint | |
| model_checkpoint = base_path + "/checkpoint-3846/" | |
| token_classifier = pipeline("token-classification", model=model_checkpoint, aggregation_strategy="simple") | |
| predictions = token_classifier(ner_text) | |
| formated_preds = [f"the word {i['word']} is labeled as {i['entity_group']}" for i in predictions] | |
| return formated_preds | |
| def predict(user_text): | |
| model_preds = loading_model_and_prediction(user_text) | |
| if len(model_preds) == 0: | |
| return "No Named Entity Found" | |
| return "\n".join(model_preds) | |
| demo = gr.Interface(fn=predict,inputs=gr.Text(value= default_text, | |
| placeholder="Arabic Text", label="Arabic Text"), | |
| outputs=gr.Text(label="Named Entity Predictions"), | |
| title="Arabic Named Entity", | |
| allow_flagging=False | |
| ) | |
| demo.launch(share=True) |