root
Uploading the app and the model
fe1404f
import gradio as gr
from pathlib import Path
from transformers import pipeline
base_path = str(Path(__file__).parent)
default_text = "اجتياح رفح الفلسطينية أكبر جريمة إبادة فى التاريخ المعاصر"
def loading_model_and_prediction(ner_text):
# Replace this with your own checkpoint
model_checkpoint = base_path + "/checkpoint-3846/"
token_classifier = pipeline("token-classification", model=model_checkpoint, aggregation_strategy="simple")
predictions = token_classifier(ner_text)
formated_preds = [f"the word {i['word']} is labeled as {i['entity_group']}" for i in predictions]
return formated_preds
def predict(user_text):
model_preds = loading_model_and_prediction(user_text)
if len(model_preds) == 0:
return "No Named Entity Found"
return "\n".join(model_preds)
demo = gr.Interface(fn=predict,inputs=gr.Text(value= default_text,
placeholder="Arabic Text", label="Arabic Text"),
outputs=gr.Text(label="Named Entity Predictions"),
title="Arabic Named Entity",
allow_flagging=False
)
demo.launch(share=True)