Spaces:
Sleeping
Sleeping
| # app.py | |
| import gradio as gr | |
| from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline | |
| import os | |
| import torch | |
| import re | |
| MODEL_ID = "Muhammadidrees/MedicalInsights" | |
| # ----------------------- | |
| # Load tokenizer + model safely (GPU or CPU) | |
| # ----------------------- | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_ID) | |
| # Try a few loading strategies so this works on GPU or CPU Spaces | |
| try: | |
| # Preferred: let HF decide device placement (works for GPU-enabled Spaces) | |
| model = AutoModelForCausalLM.from_pretrained(MODEL_ID) | |
| except Exception: | |
| # Fallback: force CPU (slower but safe) | |
| model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.float32, low_cpu_mem_usage=True) | |
| # Create pipeline | |
| pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1) | |
| # ----------------------- | |
| # Helper: robust section splitter | |
| # ----------------------- | |
| def split_report(text): | |
| """ | |
| Split model output into left (sections 1-4) and right (sections 5-6). | |
| Accepts various markers for robustness. | |
| """ | |
| # Normalize whitespace | |
| text = text.strip() | |
| # Common markers that indicate tabular/insights section | |
| markers = [ | |
| "5. Tabular Mapping", | |
| "5. Tabular", | |
| "Tabular Mapping", | |
| "Tabular & AI Insights", | |
| "π Tabular", | |
| "## 5", | |
| ] | |
| # Find earliest marker occurrence | |
| idx = None | |
| for m in markers: | |
| pos = text.find(m) | |
| if pos != -1: | |
| if idx is None or pos < idx: | |
| idx = pos | |
| if idx is None: | |
| # fallback: try splitting at "Enhanced AI Insights" or "Enhanced AI" | |
| fallback = text.find("Enhanced AI Insights") | |
| if fallback == -1: | |
| fallback = text.find("Enhanced AI") | |
| idx = fallback if fallback != -1 else None | |
| if idx is None: | |
| # couldn't find a split marker -> put everything in left | |
| return text, "" | |
| left = text[:idx].strip() | |
| right = text[idx:].strip() | |
| return left, right | |
| # ----------------------- | |
| # The analyze function | |
| # ----------------------- | |
| def analyze( | |
| albumin, creatinine, glucose, crp, mcv, rdw, alp, | |
| wbc, lymph, age, gender, height, weight | |
| ): | |
| # Validate BMI | |
| try: | |
| height = float(height) | |
| weight = float(weight) | |
| bmi = round(weight / ((height / 100) ** 2), 2) if height > 0 else "N/A" | |
| except Exception: | |
| bmi = "N/A" | |
| # ------------------------- | |
| # System prompt (enforce 6 headings) | |
| # ------------------------- | |
| system_prompt = ( | |
| "You are a professional AI Medical Assistant.\n" | |
| "You are analyzing patient demographics (age, height, weight) and the Levine biomarker panel.\n\n" | |
| "STRICT RULES:\n" | |
| "- Use ONLY the 9 biomarkers (Albumin, Creatinine, Glucose, CRP, MCV, RDW, ALP, WBC, Lymphocytes) + Age/Height/Weight.\n" | |
| "- Do NOT use or invent other labs (cholesterol, ferritin, vitamin D, etc.).\n" | |
| "- If data missing: explicitly write 'Not available from current biomarkers.'\n" | |
| "- Always cover ALL SIX SECTIONS with detail:\n" | |
| " 1. Executive Summary\n" | |
| " 2. System-Specific Analysis\n" | |
| " 3. Personalized Action Plan\n" | |
| " 4. Interaction Alerts\n" | |
| " 5. Tabular Mapping\n" | |
| " 6. Enhanced AI Insights & Longitudinal Risk\n" | |
| "- Use Markdown formatting for readability.\n" | |
| "- Keep tone professional, clear, and client-friendly.\n" | |
| "- Tables must be clean Markdown tables.\n" | |
| ) | |
| # Patient input block | |
| patient_input = ( | |
| f"Patient Profile:\n" | |
| f"- Age: {age}\n" | |
| f"- Gender: {gender}\n" | |
| f"- Height: {height} cm\n" | |
| f"- Weight: {weight} kg\n" | |
| f"- BMI: {bmi}\n\n" | |
| "Lab Values:\n" | |
| f"- Albumin: {albumin} g/dL\n" | |
| f"- Creatinine: {creatinine} mg/dL\n" | |
| f"- Glucose: {glucose} mg/dL\n" | |
| f"- CRP: {crp} mg/L\n" | |
| f"- MCV: {mcv} fL\n" | |
| f"- RDW: {rdw} %\n" | |
| f"- ALP: {alp} U/L\n" | |
| f"- WBC: {wbc} K/uL\n" | |
| f"- Lymphocytes: {lymph} %\n" | |
| ) | |
| prompt = system_prompt + "\n" + patient_input | |
| # ------------------------- | |
| # Generate with strong control | |
| # ------------------------- | |
| gen = pipe( | |
| prompt, | |
| max_new_tokens=3000, | |
| do_sample=False, # deterministic | |
| temperature=0.01, # no randomness | |
| top_p=1.0, # cover all tokens | |
| repetition_penalty=1.1, # reduce repetition | |
| return_full_text=False | |
| ) | |
| # Extract text | |
| generated = gen[0].get("generated_text") or gen[0].get("text") or "" | |
| generated = generated.strip() | |
| # Remove possible echoes | |
| for chunk in [patient_input, system_prompt]: | |
| if chunk.strip() in generated: | |
| generated = generated.split(chunk.strip())[-1].strip() | |
| # Split into panels | |
| left_md, right_md = split_report(generated) | |
| # Fallback if empty | |
| if len(left_md) < 50 and len(right_md) < 50: | |
| return ( | |
| "β οΈ Model response too short. Please re-run.\n\n**Patient Profile:**\n" + patient_input, | |
| "" | |
| ) | |
| return left_md, right_md | |
| # ----------------------- | |
| # Build Gradio app | |
| # ----------------------- | |
| with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
| gr.Markdown("# π₯ AI Medical Biomarker Dashboard") | |
| gr.Markdown("Enter lab values and demographics β Report is generated in two panels (Summary & Table/Insights).") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π€ Demographics") | |
| age = gr.Number(label="Age", value=45) | |
| gender = gr.Dropdown(["Male", "Female"], label="Gender", value="Male") | |
| height = gr.Number(label="Height (cm)", value=174) | |
| weight = gr.Number(label="Weight (kg)", value=75) | |
| gr.Markdown("### π©Έ Blood Panel") | |
| wbc = gr.Number(label="WBC (K/uL)", value=6.5) | |
| lymph = gr.Number(label="Lymphocytes (%)", value=30) | |
| mcv = gr.Number(label="MCV (fL)", value=88) | |
| rdw = gr.Number(label="RDW (%)", value=13) | |
| with gr.Column(scale=1): | |
| gr.Markdown("### 𧬠Chemistry Panel") | |
| albumin = gr.Number(label="Albumin (g/dL)", value=4.2) | |
| creatinine = gr.Number(label="Creatinine (mg/dL)", value=0.9) | |
| glucose = gr.Number(label="Glucose (mg/dL)", value=92) | |
| crp = gr.Number(label="CRP (mg/L)", value=1.0) | |
| alp = gr.Number(label="ALP (U/L)", value=70) | |
| analyze_btn = gr.Button("π¬ Generate Report", variant="primary") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π Summary & Action Plan") | |
| left_output = gr.Markdown(value="Press *Generate Report* to create the analysis.") | |
| with gr.Column(scale=1): | |
| gr.Markdown("### π Tabular & AI Insights") | |
| right_output = gr.Markdown(value="Tabular mapping and enhanced insights will appear here.") | |
| # Connect button to function | |
| analyze_btn.click( | |
| fn=analyze, | |
| inputs=[albumin, creatinine, glucose, crp, mcv, rdw, alp, wbc, lymph, age, gender, height, weight], | |
| outputs=[left_output, right_output] | |
| ) | |
| # ------------------------- | |
| # Launch app with error visibility | |
| # ------------------------- | |
| if __name__ == "__main__": | |
| demo.launch( | |
| server_name="0.0.0.0", | |
| server_port=int(os.environ.get("PORT", 7860)), | |
| show_error=True, # π enables full error trace in logs | |
| share=False # keep private; set True only for public links | |
| ) | |