Muhammadidrees's picture
Update app.py
9885f37 verified
raw
history blame
7.61 kB
# app.py
import gradio as gr
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import os
import torch
import re
MODEL_ID = "Muhammadidrees/MedicalInsights"
# -----------------------
# Load tokenizer + model safely (GPU or CPU)
# -----------------------
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
# Try a few loading strategies so this works on GPU or CPU Spaces
try:
# Preferred: let HF decide device placement (works for GPU-enabled Spaces)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID)
except Exception:
# Fallback: force CPU (slower but safe)
model = AutoModelForCausalLM.from_pretrained(MODEL_ID, torch_dtype=torch.float32, low_cpu_mem_usage=True)
# Create pipeline
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
# -----------------------
# Helper: robust section splitter
# -----------------------
def split_report(text):
"""
Split model output into left (sections 1-4) and right (sections 5-6).
Accepts various markers for robustness.
"""
# Normalize whitespace
text = text.strip()
# Common markers that indicate tabular/insights section
markers = [
"5. Tabular Mapping",
"5. Tabular",
"Tabular Mapping",
"Tabular & AI Insights",
"πŸ“Š Tabular",
"## 5",
]
# Find earliest marker occurrence
idx = None
for m in markers:
pos = text.find(m)
if pos != -1:
if idx is None or pos < idx:
idx = pos
if idx is None:
# fallback: try splitting at "Enhanced AI Insights" or "Enhanced AI"
fallback = text.find("Enhanced AI Insights")
if fallback == -1:
fallback = text.find("Enhanced AI")
idx = fallback if fallback != -1 else None
if idx is None:
# couldn't find a split marker -> put everything in left
return text, ""
left = text[:idx].strip()
right = text[idx:].strip()
return left, right
# -----------------------
# The analyze function
# -----------------------
def analyze(
albumin, creatinine, glucose, crp, mcv, rdw, alp,
wbc, lymph, age, gender, height, weight
):
# Validate BMI
try:
height = float(height)
weight = float(weight)
bmi = round(weight / ((height / 100) ** 2), 2) if height > 0 else "N/A"
except Exception:
bmi = "N/A"
# -------------------------
# System prompt (enforce 6 headings)
# -------------------------
system_prompt = (
"You are a professional AI Medical Assistant.\n"
"You are analyzing patient demographics (age, height, weight) and the Levine biomarker panel.\n\n"
"STRICT RULES:\n"
"- Use ONLY the 9 biomarkers (Albumin, Creatinine, Glucose, CRP, MCV, RDW, ALP, WBC, Lymphocytes) + Age/Height/Weight.\n"
"- Do NOT use or invent other labs (cholesterol, ferritin, vitamin D, etc.).\n"
"- If data missing: explicitly write 'Not available from current biomarkers.'\n"
"- Always cover ALL SIX SECTIONS with detail:\n"
" 1. Executive Summary\n"
" 2. System-Specific Analysis\n"
" 3. Personalized Action Plan\n"
" 4. Interaction Alerts\n"
" 5. Tabular Mapping\n"
" 6. Enhanced AI Insights & Longitudinal Risk\n"
"- Use Markdown formatting for readability.\n"
"- Keep tone professional, clear, and client-friendly.\n"
"- Tables must be clean Markdown tables.\n"
)
# Patient input block
patient_input = (
f"Patient Profile:\n"
f"- Age: {age}\n"
f"- Gender: {gender}\n"
f"- Height: {height} cm\n"
f"- Weight: {weight} kg\n"
f"- BMI: {bmi}\n\n"
"Lab Values:\n"
f"- Albumin: {albumin} g/dL\n"
f"- Creatinine: {creatinine} mg/dL\n"
f"- Glucose: {glucose} mg/dL\n"
f"- CRP: {crp} mg/L\n"
f"- MCV: {mcv} fL\n"
f"- RDW: {rdw} %\n"
f"- ALP: {alp} U/L\n"
f"- WBC: {wbc} K/uL\n"
f"- Lymphocytes: {lymph} %\n"
)
prompt = system_prompt + "\n" + patient_input
# -------------------------
# Generate with strong control
# -------------------------
gen = pipe(
prompt,
max_new_tokens=3000,
do_sample=False, # deterministic
temperature=0.01, # no randomness
top_p=1.0, # cover all tokens
repetition_penalty=1.1, # reduce repetition
return_full_text=False
)
# Extract text
generated = gen[0].get("generated_text") or gen[0].get("text") or ""
generated = generated.strip()
# Remove possible echoes
for chunk in [patient_input, system_prompt]:
if chunk.strip() in generated:
generated = generated.split(chunk.strip())[-1].strip()
# Split into panels
left_md, right_md = split_report(generated)
# Fallback if empty
if len(left_md) < 50 and len(right_md) < 50:
return (
"⚠️ Model response too short. Please re-run.\n\n**Patient Profile:**\n" + patient_input,
""
)
return left_md, right_md
# -----------------------
# Build Gradio app
# -----------------------
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# πŸ₯ AI Medical Biomarker Dashboard")
gr.Markdown("Enter lab values and demographics β€” Report is generated in two panels (Summary & Table/Insights).")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### πŸ‘€ Demographics")
age = gr.Number(label="Age", value=45)
gender = gr.Dropdown(["Male", "Female"], label="Gender", value="Male")
height = gr.Number(label="Height (cm)", value=174)
weight = gr.Number(label="Weight (kg)", value=75)
gr.Markdown("### 🩸 Blood Panel")
wbc = gr.Number(label="WBC (K/uL)", value=6.5)
lymph = gr.Number(label="Lymphocytes (%)", value=30)
mcv = gr.Number(label="MCV (fL)", value=88)
rdw = gr.Number(label="RDW (%)", value=13)
with gr.Column(scale=1):
gr.Markdown("### 🧬 Chemistry Panel")
albumin = gr.Number(label="Albumin (g/dL)", value=4.2)
creatinine = gr.Number(label="Creatinine (mg/dL)", value=0.9)
glucose = gr.Number(label="Glucose (mg/dL)", value=92)
crp = gr.Number(label="CRP (mg/L)", value=1.0)
alp = gr.Number(label="ALP (U/L)", value=70)
analyze_btn = gr.Button("πŸ”¬ Generate Report", variant="primary")
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### πŸ“ Summary & Action Plan")
left_output = gr.Markdown(value="Press *Generate Report* to create the analysis.")
with gr.Column(scale=1):
gr.Markdown("### πŸ“Š Tabular & AI Insights")
right_output = gr.Markdown(value="Tabular mapping and enhanced insights will appear here.")
# Connect button to function
analyze_btn.click(
fn=analyze,
inputs=[albumin, creatinine, glucose, crp, mcv, rdw, alp, wbc, lymph, age, gender, height, weight],
outputs=[left_output, right_output]
)
# -------------------------
# Launch app with error visibility
# -------------------------
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=int(os.environ.get("PORT", 7860)),
show_error=True, # πŸ‘ˆ enables full error trace in logs
share=False # keep private; set True only for public links
)