Spaces:
Running
Running
Upload graph_v18.py
Browse files- graph_v18.py +775 -0
graph_v18.py
ADDED
|
@@ -0,0 +1,775 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# graph_v18.py - Optimized for 3060 TI (8GB VRAM) and similar low-VRAM GPUs
|
| 2 |
+
# Copyright (C) 2025 Arcee AI
|
| 3 |
+
# SPDX-License-Identifier: LGPL-3.0-only
|
| 4 |
+
"""
|
| 5 |
+
Module for computational graph execution.
|
| 6 |
+
|
| 7 |
+
Classes:
|
| 8 |
+
Task: Abstract base class representing a computational task.
|
| 9 |
+
Executor: Class for scheduling and executing directed acyclic task graphs.
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
import os
|
| 13 |
+
import sys
|
| 14 |
+
import gc
|
| 15 |
+
import logging
|
| 16 |
+
import networkx
|
| 17 |
+
import torch
|
| 18 |
+
import tqdm
|
| 19 |
+
from pydantic import BaseModel
|
| 20 |
+
from typing_extensions import Generic, TypeVar
|
| 21 |
+
from abc import ABC, abstractmethod
|
| 22 |
+
from typing import Any, Dict, Iterable, Iterator, List, Optional, Tuple, Union
|
| 23 |
+
|
| 24 |
+
from mergekit.common import get_torch_accelerator_module
|
| 25 |
+
|
| 26 |
+
# ============================================================================
|
| 27 |
+
# CONFIGURATION SECTION - TUNE THESE PARAMETERS FOR YOUR GPU
|
| 28 |
+
# ============================================================================
|
| 29 |
+
|
| 30 |
+
# --- PRIMARY VRAM TARGETS ---
|
| 31 |
+
# For 3060 TI (8GB): Start with 7.2-7.4GB. Increase if stable, decrease if OOM.
|
| 32 |
+
# For 3060 (12GB): Try 10.5-11.0GB
|
| 33 |
+
# For 4GB cards: Try 3.2-3.5GB
|
| 34 |
+
TARGET_VRAM_GB = 7.7 # Target VRAM usage in GB (TUNE THIS FIRST)
|
| 35 |
+
|
| 36 |
+
# Safety margin to account for PyTorch overhead and fragmentation
|
| 37 |
+
# Windows typically needs ~0.8GB, Linux ~0.5GB
|
| 38 |
+
VRAM_SAFETY_MARGIN_GB = 0.2 # Reduce to 0.5-0.6 on Linux, increase to 1.0 if unstable
|
| 39 |
+
|
| 40 |
+
# --- CUDA MEMORY ALLOCATOR CONFIGURATION ---
|
| 41 |
+
# Smaller values = less fragmentation but more overhead
|
| 42 |
+
# 24MB is optimal for 8GB cards, 32MB for 12GB+ cards
|
| 43 |
+
CUDA_MAX_SPLIT_SIZE_MB = 24 # Options: 16, 24, 32, 64
|
| 44 |
+
|
| 45 |
+
# --- CHUNK SIZE BEHAVIOR ---
|
| 46 |
+
# How aggressively to reduce chunk size on OOM (0.5-0.9 range)
|
| 47 |
+
# Lower = more conservative (slower but safer), Higher = more aggressive
|
| 48 |
+
CHUNK_REDUCTION_FACTOR = 0.75 # Options: 0.5 (safe), 0.7 (balanced), 0.85 (aggressive)
|
| 49 |
+
|
| 50 |
+
# Minimum chunk size before giving up and falling back to CPU
|
| 51 |
+
MIN_CHUNK_SIZE = 1 # Usually keep at 1, increase to 4-8 if seeing micro-chunk overhead
|
| 52 |
+
|
| 53 |
+
# Enable power-of-2 alignment for chunk sizes (following measure.py strategy)
|
| 54 |
+
# This improves memory allocation efficiency
|
| 55 |
+
ENABLE_POWER_OF_2_ALIGNMENT = True # Set False if causing issues
|
| 56 |
+
|
| 57 |
+
# --- TASK-SPECIFIC MEMORY MULTIPLIERS ---
|
| 58 |
+
# These control how much extra VRAM to reserve for specific task types
|
| 59 |
+
# Increase if task OOMs, decrease if underutilizing VRAM
|
| 60 |
+
TASK_MULTIPLIERS = {
|
| 61 |
+
"ModelStock": 2.2, # Options: 1.8-2.5 (needs room for pairwise similarities)
|
| 62 |
+
"Karcher": 3.0, # Options: 2.5-3.5 (iterative, needs working memory)
|
| 63 |
+
"Consensus": 3.0, # Options: 2.5-3.5 (similar to Karcher)
|
| 64 |
+
"default": 1.2, # Options: 1.0-1.5 (general tasks)
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
# --- MEMORY CLEANUP BEHAVIOR ---
|
| 68 |
+
# Enable aggressive garbage collection and cache clearing
|
| 69 |
+
# True = slower but more stable, False = faster but may fragment memory
|
| 70 |
+
ENABLE_AGGRESSIVE_CLEANUP = False # Set False if merges are very stable
|
| 71 |
+
|
| 72 |
+
# How often to force cleanup (every N tasks). 0 = after every task
|
| 73 |
+
CLEANUP_FREQUENCY = 10 # Options: 0 (always), 1, 2, 5, 10
|
| 74 |
+
|
| 75 |
+
# --- FALLBACK STRATEGY ---
|
| 76 |
+
# Fixed chunk sizes to try if adaptive chunking fails
|
| 77 |
+
# Powers of 2 work best for GPU memory alignment
|
| 78 |
+
FALLBACK_CHUNK_SIZES = [4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2]
|
| 79 |
+
|
| 80 |
+
# --- FAST PATH OPTIMIZATION ---
|
| 81 |
+
# Try to execute entire task at once before chunking
|
| 82 |
+
# True = faster when it works, False = always chunk (more conservative)
|
| 83 |
+
ENABLE_FAST_PATH = True # Set False if getting frequent OOM on large tasks
|
| 84 |
+
|
| 85 |
+
# --- TASK ROUTING ---
|
| 86 |
+
# Tasks that should always run on CPU (typically I/O bound)
|
| 87 |
+
CPU_ONLY_TASKS = [
|
| 88 |
+
"LoadTensor",
|
| 89 |
+
"GatherTensors",
|
| 90 |
+
"SaveTensor",
|
| 91 |
+
"TensorWriterTask",
|
| 92 |
+
"FinalizeModel",
|
| 93 |
+
"PermutedEmbeddings", # Gather operations don't benefit from GPU
|
| 94 |
+
]
|
| 95 |
+
|
| 96 |
+
# ============================================================================
|
| 97 |
+
# END OF CONFIGURATION SECTION
|
| 98 |
+
# ============================================================================
|
| 99 |
+
|
| 100 |
+
if sys.platform == "win32":
|
| 101 |
+
os.environ["PYTORCH_CUDA_ALLOC_CONF"] = f"max_split_size_mb:{CUDA_MAX_SPLIT_SIZE_MB}"
|
| 102 |
+
|
| 103 |
+
ValueT = TypeVar("ValueT")
|
| 104 |
+
LOG = logging.getLogger(__name__)
|
| 105 |
+
|
| 106 |
+
|
| 107 |
+
def _round_to_power_of_2(n: int, prefer_lower: bool = True) -> int:
|
| 108 |
+
"""Round to nearest power of 2 for memory alignment."""
|
| 109 |
+
if n <= 0:
|
| 110 |
+
return 1
|
| 111 |
+
if n == 1:
|
| 112 |
+
return 1
|
| 113 |
+
|
| 114 |
+
# Find the two nearest powers of 2
|
| 115 |
+
power = n.bit_length() - 1
|
| 116 |
+
lower = 1 << power
|
| 117 |
+
upper = 1 << (power + 1)
|
| 118 |
+
|
| 119 |
+
if prefer_lower or (n - lower) < (upper - n):
|
| 120 |
+
return lower
|
| 121 |
+
return upper
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
class Task(ABC, BaseModel, Generic[ValueT], frozen=True):
|
| 125 |
+
@abstractmethod
|
| 126 |
+
def arguments(self) -> Dict[str, "Task"]:
|
| 127 |
+
...
|
| 128 |
+
|
| 129 |
+
@abstractmethod
|
| 130 |
+
def execute(self, **kwargs) -> ValueT:
|
| 131 |
+
...
|
| 132 |
+
|
| 133 |
+
def priority(self) -> int:
|
| 134 |
+
return 0
|
| 135 |
+
|
| 136 |
+
def group_label(self) -> Optional[str]:
|
| 137 |
+
return None
|
| 138 |
+
|
| 139 |
+
def uses_accelerator(self) -> bool:
|
| 140 |
+
return False
|
| 141 |
+
|
| 142 |
+
def main_thread_only(self) -> bool:
|
| 143 |
+
return False
|
| 144 |
+
|
| 145 |
+
def duplicate_per_gpu(self) -> bool:
|
| 146 |
+
return False
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
class TaskUniverse:
|
| 150 |
+
tasks: List[Task]
|
| 151 |
+
task_to_index: Dict[Task, int]
|
| 152 |
+
task_arguments: Dict[int, Dict[str, int]]
|
| 153 |
+
_type_id_to_index: Dict[Tuple[type, int], int]
|
| 154 |
+
|
| 155 |
+
def __init__(self, tasks: Optional[Iterable[Task]] = None):
|
| 156 |
+
self.tasks = []
|
| 157 |
+
self.task_to_index = {}
|
| 158 |
+
self.task_arguments = {}
|
| 159 |
+
self._type_id_to_index = {}
|
| 160 |
+
if tasks is not None:
|
| 161 |
+
for task in tasks:
|
| 162 |
+
self.add_task(task)
|
| 163 |
+
|
| 164 |
+
def add_task(self, task: Task, recursive: bool = True) -> "TaskHandle":
|
| 165 |
+
_ti_key = (type(task), id(task))
|
| 166 |
+
if _ti_key in self._type_id_to_index:
|
| 167 |
+
index = self._type_id_to_index[_ti_key]
|
| 168 |
+
return TaskHandle(self, index)
|
| 169 |
+
|
| 170 |
+
index = self.task_to_index.setdefault(task, len(self.tasks))
|
| 171 |
+
if index < len(self.tasks):
|
| 172 |
+
return TaskHandle(self, index)
|
| 173 |
+
self.tasks.append(task)
|
| 174 |
+
self._type_id_to_index[_ti_key] = index
|
| 175 |
+
|
| 176 |
+
if recursive:
|
| 177 |
+
self.task_arguments[index] = {}
|
| 178 |
+
for k, v in task.arguments().items():
|
| 179 |
+
self.task_arguments[index][k] = self.add_task(v, recursive=True)._index
|
| 180 |
+
return TaskHandle(self, index)
|
| 181 |
+
|
| 182 |
+
def get_handle(self, task: Task) -> Optional["TaskHandle"]:
|
| 183 |
+
if task not in self.task_to_index:
|
| 184 |
+
return None
|
| 185 |
+
return TaskHandle(self, self.task_to_index[task])
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
class TaskHandle:
|
| 189 |
+
__slots__ = ["_universe", "_index"]
|
| 190 |
+
_universe: TaskUniverse
|
| 191 |
+
_index: int
|
| 192 |
+
|
| 193 |
+
def __init__(self, universe: TaskUniverse, index: int):
|
| 194 |
+
self._universe = universe
|
| 195 |
+
self._index = index
|
| 196 |
+
|
| 197 |
+
def task(self) -> Task:
|
| 198 |
+
return self._universe.tasks[self._index]
|
| 199 |
+
|
| 200 |
+
def arguments(self) -> Dict[str, "TaskHandle"]:
|
| 201 |
+
return {
|
| 202 |
+
k: TaskHandle(self._universe, v)
|
| 203 |
+
for k, v in self._universe.task_arguments[self._index].items()
|
| 204 |
+
}
|
| 205 |
+
|
| 206 |
+
def __eq__(self, other):
|
| 207 |
+
if not isinstance(other, TaskHandle):
|
| 208 |
+
return False
|
| 209 |
+
return self._index == other._index and self._universe is other._universe
|
| 210 |
+
|
| 211 |
+
def __hash__(self):
|
| 212 |
+
return self._index
|
| 213 |
+
|
| 214 |
+
def __str__(self):
|
| 215 |
+
return f"TaskHandle({type(self.task()).__name__}, {self._index})"
|
| 216 |
+
|
| 217 |
+
__repr__ = __str__
|
| 218 |
+
|
| 219 |
+
|
| 220 |
+
class ExecutionSchedule:
|
| 221 |
+
tasks: List[TaskHandle]
|
| 222 |
+
last_use_index: Dict[TaskHandle, int]
|
| 223 |
+
|
| 224 |
+
def __init__(self, tasks: List[TaskHandle], last_use_index: Dict[TaskHandle, int]):
|
| 225 |
+
self.tasks = tasks
|
| 226 |
+
self.last_use_index = last_use_index
|
| 227 |
+
|
| 228 |
+
|
| 229 |
+
def build_schedule(
|
| 230 |
+
targets: List[TaskHandle], cached_values: Dict[TaskHandle, Any]
|
| 231 |
+
) -> ExecutionSchedule:
|
| 232 |
+
if not targets:
|
| 233 |
+
return ExecutionSchedule(tasks=[], last_use_index={})
|
| 234 |
+
|
| 235 |
+
universe = targets[0]._universe
|
| 236 |
+
dummy_handle = TaskHandle(universe, -1)
|
| 237 |
+
edge_tups: List[Tuple[TaskHandle, TaskHandle]] = []
|
| 238 |
+
|
| 239 |
+
explored = set()
|
| 240 |
+
to_explore = set(targets)
|
| 241 |
+
while to_explore:
|
| 242 |
+
task = to_explore.pop()
|
| 243 |
+
if task in explored:
|
| 244 |
+
continue
|
| 245 |
+
explored.add(task)
|
| 246 |
+
if task in (cached_values or {}):
|
| 247 |
+
continue
|
| 248 |
+
for dep in task.arguments().values():
|
| 249 |
+
to_explore.add(dep)
|
| 250 |
+
edge_tups.append((dep, task))
|
| 251 |
+
|
| 252 |
+
for target in targets:
|
| 253 |
+
edge_tups.append((dummy_handle, target))
|
| 254 |
+
|
| 255 |
+
def _compare_key(node: TaskHandle) -> Tuple[str, int]:
|
| 256 |
+
if node._index < 0:
|
| 257 |
+
return ("", 0)
|
| 258 |
+
task = node.task()
|
| 259 |
+
return (task.group_label() or "", -task.priority())
|
| 260 |
+
|
| 261 |
+
graph = networkx.DiGraph(edge_tups)
|
| 262 |
+
schedule: List[TaskHandle] = [
|
| 263 |
+
node
|
| 264 |
+
for node in networkx.lexicographical_topological_sort(graph, key=_compare_key)
|
| 265 |
+
if (node != dummy_handle) and node not in (cached_values or {})
|
| 266 |
+
]
|
| 267 |
+
|
| 268 |
+
last_use_index = {}
|
| 269 |
+
for idx, task in reversed(list(enumerate(schedule))):
|
| 270 |
+
for dep in task.arguments().values():
|
| 271 |
+
if dep not in last_use_index:
|
| 272 |
+
last_use_index[dep] = idx
|
| 273 |
+
if task not in last_use_index:
|
| 274 |
+
last_use_index[task] = idx
|
| 275 |
+
for task in cached_values or {}:
|
| 276 |
+
if task not in last_use_index:
|
| 277 |
+
last_use_index[task] = len(schedule) + 1
|
| 278 |
+
|
| 279 |
+
return ExecutionSchedule(tasks=schedule, last_use_index=last_use_index)
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
class Executor:
|
| 283 |
+
math_device: torch.device
|
| 284 |
+
storage_device: torch.device
|
| 285 |
+
universe: TaskUniverse
|
| 286 |
+
targets: List[TaskHandle]
|
| 287 |
+
schedule: ExecutionSchedule
|
| 288 |
+
cached_values: Optional[Dict[TaskHandle, Any]]
|
| 289 |
+
_task_counter: int
|
| 290 |
+
|
| 291 |
+
def __init__(
|
| 292 |
+
self,
|
| 293 |
+
targets: Union[List[Task], List[TaskHandle]],
|
| 294 |
+
math_device: torch.device = torch.device("cpu"),
|
| 295 |
+
storage_device: torch.device = torch.device("cpu"),
|
| 296 |
+
cached_values: Optional[Dict[TaskHandle, Any]] = None,
|
| 297 |
+
):
|
| 298 |
+
self.cached_values = cached_values
|
| 299 |
+
self._task_counter = 0
|
| 300 |
+
|
| 301 |
+
if isinstance(math_device, str):
|
| 302 |
+
math_device = torch.device(math_device)
|
| 303 |
+
if isinstance(storage_device, str):
|
| 304 |
+
storage_device = torch.device(storage_device)
|
| 305 |
+
self.math_device = math_device
|
| 306 |
+
self.storage_device = storage_device
|
| 307 |
+
|
| 308 |
+
if targets and isinstance(targets[0], Task):
|
| 309 |
+
universe = TaskUniverse(targets)
|
| 310 |
+
targets = [universe.add_task(t) for t in targets]
|
| 311 |
+
elif targets and isinstance(targets[0], TaskHandle):
|
| 312 |
+
universe = targets[0]._universe
|
| 313 |
+
elif not targets:
|
| 314 |
+
universe = TaskUniverse()
|
| 315 |
+
else:
|
| 316 |
+
raise ValueError("Targets must be a list of Task or TaskHandle instances")
|
| 317 |
+
|
| 318 |
+
self.universe = universe
|
| 319 |
+
self.targets = targets
|
| 320 |
+
self.schedule = build_schedule(targets, cached_values=cached_values)
|
| 321 |
+
|
| 322 |
+
def _slice_argument(self, arg: Any, start: int, end: int) -> Any:
|
| 323 |
+
"""Recursively slice tensors within nested structures."""
|
| 324 |
+
if isinstance(arg, torch.Tensor):
|
| 325 |
+
if arg.shape[0] > 1:
|
| 326 |
+
return arg[start:end]
|
| 327 |
+
return arg
|
| 328 |
+
elif isinstance(arg, dict):
|
| 329 |
+
return {k: self._slice_argument(v, start, end) for k, v in arg.items()}
|
| 330 |
+
elif isinstance(arg, list):
|
| 331 |
+
return [self._slice_argument(v, start, end) for v in arg]
|
| 332 |
+
elif isinstance(arg, tuple):
|
| 333 |
+
return tuple(self._slice_argument(v, start, end) for v in arg)
|
| 334 |
+
return arg
|
| 335 |
+
|
| 336 |
+
def _get_memory_stats(self) -> Dict[str, float]:
|
| 337 |
+
"""Get current VRAM statistics in GB."""
|
| 338 |
+
if self.math_device.type != "cuda":
|
| 339 |
+
return {}
|
| 340 |
+
|
| 341 |
+
allocated = torch.cuda.memory_allocated(self.math_device) / (1024**3)
|
| 342 |
+
reserved = torch.cuda.memory_reserved(self.math_device) / (1024**3)
|
| 343 |
+
total = torch.cuda.get_device_properties(self.math_device).total_memory / (1024**3)
|
| 344 |
+
|
| 345 |
+
return {
|
| 346 |
+
"allocated_gb": allocated,
|
| 347 |
+
"reserved_gb": reserved,
|
| 348 |
+
"total_gb": total,
|
| 349 |
+
"free_gb": total - allocated,
|
| 350 |
+
}
|
| 351 |
+
|
| 352 |
+
def _get_adaptive_chunk_size(self, task: Task, arguments: Dict[str, Any]) -> int:
|
| 353 |
+
"""
|
| 354 |
+
Calculate optimal chunk size based on available VRAM and task requirements.
|
| 355 |
+
|
| 356 |
+
This implements the "measure.py strategy" of targeting a specific VRAM fill level
|
| 357 |
+
rather than using currently available memory, which prevents oscillation.
|
| 358 |
+
"""
|
| 359 |
+
if self.math_device.type == "cpu":
|
| 360 |
+
return 1024 # Large default for CPU
|
| 361 |
+
|
| 362 |
+
# Get hardware capacity
|
| 363 |
+
total_vram = torch.cuda.get_device_properties(self.math_device).total_memory
|
| 364 |
+
target_bytes = TARGET_VRAM_GB * (1024**3)
|
| 365 |
+
|
| 366 |
+
# Analyze tensor dimensions and count
|
| 367 |
+
num_tensors = 0
|
| 368 |
+
width = 0
|
| 369 |
+
bytes_per_element = 4 # Default float32
|
| 370 |
+
|
| 371 |
+
for arg in arguments.values():
|
| 372 |
+
if isinstance(arg, torch.Tensor):
|
| 373 |
+
num_tensors += 1
|
| 374 |
+
width = max(width, arg.shape[-1] if len(arg.shape) > 1 else arg.shape[0])
|
| 375 |
+
bytes_per_element = arg.element_size()
|
| 376 |
+
elif isinstance(arg, dict):
|
| 377 |
+
for v in arg.values():
|
| 378 |
+
if isinstance(v, torch.Tensor):
|
| 379 |
+
num_tensors += 1
|
| 380 |
+
width = max(width, v.shape[-1] if len(v.shape) > 1 else v.shape[0])
|
| 381 |
+
bytes_per_element = v.element_size()
|
| 382 |
+
|
| 383 |
+
if num_tensors == 0 or width == 0:
|
| 384 |
+
return 512 # Safe default
|
| 385 |
+
|
| 386 |
+
# Get task-specific multiplier
|
| 387 |
+
task_name = type(task).__name__
|
| 388 |
+
multiplier = TASK_MULTIPLIERS.get("default", 1.2)
|
| 389 |
+
|
| 390 |
+
for key, mult in TASK_MULTIPLIERS.items():
|
| 391 |
+
if key in task_name:
|
| 392 |
+
multiplier = mult
|
| 393 |
+
break
|
| 394 |
+
|
| 395 |
+
# Calculate bytes per row with multiplier for working memory
|
| 396 |
+
bytes_per_row = num_tensors * width * bytes_per_element * multiplier
|
| 397 |
+
|
| 398 |
+
# Calculate usable VRAM (target minus current allocation and safety margin)
|
| 399 |
+
current_allocated = torch.cuda.memory_allocated(self.math_device)
|
| 400 |
+
safety_bytes = VRAM_SAFETY_MARGIN_GB * (1024**3)
|
| 401 |
+
usable_vram = max(target_bytes - current_allocated - safety_bytes, 1024 * (1024**2))
|
| 402 |
+
|
| 403 |
+
# Calculate chunk size
|
| 404 |
+
chunk_size = max(MIN_CHUNK_SIZE, int(usable_vram // bytes_per_row))
|
| 405 |
+
|
| 406 |
+
# Apply power-of-2 alignment if enabled (measure.py strategy)
|
| 407 |
+
if ENABLE_POWER_OF_2_ALIGNMENT and chunk_size > MIN_CHUNK_SIZE:
|
| 408 |
+
chunk_size = _round_to_power_of_2(chunk_size, prefer_lower=True)
|
| 409 |
+
|
| 410 |
+
LOG.debug(f"Calculated chunk size: {chunk_size} (tensors={num_tensors}, width={width}, mult={multiplier:.2f})")
|
| 411 |
+
return chunk_size
|
| 412 |
+
|
| 413 |
+
def _execute_chunked(self, task: Task, arguments: Dict[str, Any]) -> Any:
|
| 414 |
+
"""
|
| 415 |
+
Execute task in chunks with progressive fallback strategy.
|
| 416 |
+
|
| 417 |
+
Strategy:
|
| 418 |
+
1. Try adaptive chunk size
|
| 419 |
+
2. On OOM, reduce by CHUNK_REDUCTION_FACTOR
|
| 420 |
+
3. Continue until success or MIN_CHUNK_SIZE reached
|
| 421 |
+
"""
|
| 422 |
+
# Find total rows to process
|
| 423 |
+
total_rows = 0
|
| 424 |
+
for arg in arguments.values():
|
| 425 |
+
if isinstance(arg, torch.Tensor):
|
| 426 |
+
total_rows = arg.shape[0]
|
| 427 |
+
break
|
| 428 |
+
elif isinstance(arg, dict):
|
| 429 |
+
for v in arg.values():
|
| 430 |
+
if isinstance(v, torch.Tensor):
|
| 431 |
+
total_rows = v.shape[0]
|
| 432 |
+
break
|
| 433 |
+
if total_rows > 0:
|
| 434 |
+
break
|
| 435 |
+
|
| 436 |
+
if total_rows == 0:
|
| 437 |
+
return task.execute(**arguments)
|
| 438 |
+
|
| 439 |
+
# Calculate initial chunk size
|
| 440 |
+
chunk_size = self._get_adaptive_chunk_size(task, arguments)
|
| 441 |
+
|
| 442 |
+
# FAST PATH: Try to execute all at once if chunk size >= total rows
|
| 443 |
+
if ENABLE_FAST_PATH and chunk_size >= total_rows:
|
| 444 |
+
try:
|
| 445 |
+
gpu_args = {
|
| 446 |
+
k: self._move_tensors(v, self.math_device)
|
| 447 |
+
for k, v in arguments.items()
|
| 448 |
+
}
|
| 449 |
+
res = task.execute(**gpu_args)
|
| 450 |
+
result = self._move_tensors(res, self.storage_device)
|
| 451 |
+
del gpu_args, res
|
| 452 |
+
if ENABLE_AGGRESSIVE_CLEANUP:
|
| 453 |
+
torch.cuda.empty_cache()
|
| 454 |
+
return result
|
| 455 |
+
except torch.OutOfMemoryError:
|
| 456 |
+
LOG.warning(f"Fast path OOM, falling back to chunking")
|
| 457 |
+
torch.cuda.empty_cache()
|
| 458 |
+
gc.collect()
|
| 459 |
+
chunk_size = max(MIN_CHUNK_SIZE, total_rows // 2)
|
| 460 |
+
|
| 461 |
+
# Chunked execution with progressive reduction
|
| 462 |
+
results = []
|
| 463 |
+
i = 0
|
| 464 |
+
oom_count = 0
|
| 465 |
+
|
| 466 |
+
while i < total_rows:
|
| 467 |
+
end = min(i + chunk_size, total_rows)
|
| 468 |
+
|
| 469 |
+
try:
|
| 470 |
+
chunk_args_gpu = {
|
| 471 |
+
k: self._move_tensors(self._slice_argument(v, i, end), self.math_device)
|
| 472 |
+
for k, v in arguments.items()
|
| 473 |
+
}
|
| 474 |
+
chunk_res = task.execute(**chunk_args_gpu)
|
| 475 |
+
results.append(self._move_tensors(chunk_res, self.storage_device))
|
| 476 |
+
|
| 477 |
+
del chunk_args_gpu, chunk_res
|
| 478 |
+
|
| 479 |
+
# Aggressive cleanup per measure.py strategy
|
| 480 |
+
if ENABLE_AGGRESSIVE_CLEANUP:
|
| 481 |
+
torch.cuda.empty_cache()
|
| 482 |
+
|
| 483 |
+
i = end # Move to next chunk
|
| 484 |
+
oom_count = 0 # Reset OOM counter on success
|
| 485 |
+
|
| 486 |
+
except torch.OutOfMemoryError:
|
| 487 |
+
oom_count += 1
|
| 488 |
+
torch.cuda.empty_cache()
|
| 489 |
+
gc.collect()
|
| 490 |
+
|
| 491 |
+
# Progressive reduction
|
| 492 |
+
old_chunk = chunk_size
|
| 493 |
+
chunk_size = max(MIN_CHUNK_SIZE, int(chunk_size * CHUNK_REDUCTION_FACTOR))
|
| 494 |
+
|
| 495 |
+
# Apply power-of-2 alignment
|
| 496 |
+
if ENABLE_POWER_OF_2_ALIGNMENT:
|
| 497 |
+
chunk_size = _round_to_power_of_2(chunk_size, prefer_lower=True)
|
| 498 |
+
|
| 499 |
+
if chunk_size < MIN_CHUNK_SIZE:
|
| 500 |
+
LOG.error(f"Chunk size below minimum ({MIN_CHUNK_SIZE}), cannot continue")
|
| 501 |
+
raise
|
| 502 |
+
|
| 503 |
+
LOG.warning(
|
| 504 |
+
f"OOM at chunk {old_chunk}, reducing to {chunk_size} "
|
| 505 |
+
f"(attempt {oom_count}, progress: {i}/{total_rows})"
|
| 506 |
+
)
|
| 507 |
+
|
| 508 |
+
# Safety: if we OOM too many times, something is wrong
|
| 509 |
+
if oom_count > 10:
|
| 510 |
+
LOG.error("Too many OOM errors, giving up")
|
| 511 |
+
raise
|
| 512 |
+
|
| 513 |
+
# Concatenate results
|
| 514 |
+
if not results:
|
| 515 |
+
return None
|
| 516 |
+
|
| 517 |
+
if isinstance(results[0], torch.Tensor):
|
| 518 |
+
return torch.cat(results, dim=0)
|
| 519 |
+
elif isinstance(results[0], dict):
|
| 520 |
+
out = {}
|
| 521 |
+
for k in results[0].keys():
|
| 522 |
+
out[k] = torch.cat([r[k] for r in results], dim=0)
|
| 523 |
+
return out
|
| 524 |
+
|
| 525 |
+
return results
|
| 526 |
+
|
| 527 |
+
def _execute_with_fallback(self, task: Task, arguments: Dict[str, Any], accelerator) -> Any:
|
| 528 |
+
"""
|
| 529 |
+
Execute task with comprehensive fallback strategy.
|
| 530 |
+
|
| 531 |
+
Strategy:
|
| 532 |
+
1. Try full GPU execution
|
| 533 |
+
2. Try adaptive chunking
|
| 534 |
+
3. Try fixed chunk sizes
|
| 535 |
+
4. Fall back to CPU
|
| 536 |
+
"""
|
| 537 |
+
task_name = type(task).__name__
|
| 538 |
+
|
| 539 |
+
# Strategy 1: Try full GPU execution for light tasks
|
| 540 |
+
try:
|
| 541 |
+
gpu_args = {
|
| 542 |
+
k: self._move_tensors(v, self.math_device)
|
| 543 |
+
for k, v in arguments.items()
|
| 544 |
+
}
|
| 545 |
+
res = task.execute(**gpu_args)
|
| 546 |
+
result = self._move_tensors(res, self.storage_device)
|
| 547 |
+
del gpu_args, res
|
| 548 |
+
return result
|
| 549 |
+
except torch.OutOfMemoryError:
|
| 550 |
+
LOG.debug(f"Full GPU execution failed for {task_name}, trying chunked")
|
| 551 |
+
torch.cuda.empty_cache()
|
| 552 |
+
gc.collect()
|
| 553 |
+
except Exception as e:
|
| 554 |
+
LOG.warning(f"GPU execution error for {task_name}: {e}")
|
| 555 |
+
torch.cuda.empty_cache()
|
| 556 |
+
raise
|
| 557 |
+
|
| 558 |
+
# Strategy 2: Try adaptive chunking
|
| 559 |
+
try:
|
| 560 |
+
result = self._execute_chunked(task, arguments)
|
| 561 |
+
return result
|
| 562 |
+
except torch.OutOfMemoryError:
|
| 563 |
+
LOG.warning(f"Adaptive chunking failed for {task_name}, trying fixed sizes")
|
| 564 |
+
torch.cuda.empty_cache()
|
| 565 |
+
gc.collect()
|
| 566 |
+
except Exception as e:
|
| 567 |
+
LOG.warning(f"Chunking error for {task_name}: {e}")
|
| 568 |
+
raise
|
| 569 |
+
|
| 570 |
+
# Strategy 3: Try fixed chunk sizes
|
| 571 |
+
for chunk_size in FALLBACK_CHUNK_SIZES:
|
| 572 |
+
if chunk_size < MIN_CHUNK_SIZE:
|
| 573 |
+
continue
|
| 574 |
+
|
| 575 |
+
try:
|
| 576 |
+
LOG.info(f"Trying fixed chunk size {chunk_size} for {task_name}")
|
| 577 |
+
|
| 578 |
+
# Get total rows
|
| 579 |
+
total_rows = 0
|
| 580 |
+
for arg in arguments.values():
|
| 581 |
+
if isinstance(arg, torch.Tensor):
|
| 582 |
+
total_rows = arg.shape[0]
|
| 583 |
+
break
|
| 584 |
+
elif isinstance(arg, dict):
|
| 585 |
+
for v in arg.values():
|
| 586 |
+
if isinstance(v, torch.Tensor):
|
| 587 |
+
total_rows = v.shape[0]
|
| 588 |
+
break
|
| 589 |
+
if total_rows > 0:
|
| 590 |
+
break
|
| 591 |
+
|
| 592 |
+
if total_rows == 0:
|
| 593 |
+
break
|
| 594 |
+
|
| 595 |
+
results = []
|
| 596 |
+
for i in range(0, total_rows, chunk_size):
|
| 597 |
+
end = min(i + chunk_size, total_rows)
|
| 598 |
+
chunk_args = {
|
| 599 |
+
k: self._slice_argument(v, i, end)
|
| 600 |
+
for k, v in arguments.items()
|
| 601 |
+
}
|
| 602 |
+
chunk_args_gpu = {
|
| 603 |
+
k: self._move_tensors(v, self.math_device)
|
| 604 |
+
for k, v in chunk_args.items()
|
| 605 |
+
}
|
| 606 |
+
chunk_res = task.execute(**chunk_args_gpu)
|
| 607 |
+
results.append(self._move_tensors(chunk_res, self.storage_device))
|
| 608 |
+
del chunk_args, chunk_args_gpu, chunk_res
|
| 609 |
+
|
| 610 |
+
if ENABLE_AGGRESSIVE_CLEANUP:
|
| 611 |
+
torch.cuda.empty_cache()
|
| 612 |
+
|
| 613 |
+
if isinstance(results[0], torch.Tensor):
|
| 614 |
+
return torch.cat(results, dim=0)
|
| 615 |
+
elif isinstance(results[0], dict):
|
| 616 |
+
out = {}
|
| 617 |
+
for k in results[0].keys():
|
| 618 |
+
out[k] = torch.cat([r[k] for r in results], dim=0)
|
| 619 |
+
return out
|
| 620 |
+
return results
|
| 621 |
+
|
| 622 |
+
except torch.OutOfMemoryError:
|
| 623 |
+
torch.cuda.empty_cache()
|
| 624 |
+
gc.collect()
|
| 625 |
+
continue
|
| 626 |
+
except Exception as e:
|
| 627 |
+
LOG.warning(f"Fixed chunk {chunk_size} failed: {e}")
|
| 628 |
+
break
|
| 629 |
+
|
| 630 |
+
# Strategy 4: CPU fallback
|
| 631 |
+
LOG.warning(f"All GPU strategies failed for {task_name}, using CPU")
|
| 632 |
+
raise torch.OutOfMemoryError("Forcing CPU fallback")
|
| 633 |
+
|
| 634 |
+
def _run(
|
| 635 |
+
self,
|
| 636 |
+
quiet: bool = False,
|
| 637 |
+
desc: Optional[str] = None,
|
| 638 |
+
) -> Iterator[Tuple[TaskHandle, Any]]:
|
| 639 |
+
last_use_index = self.schedule.last_use_index
|
| 640 |
+
|
| 641 |
+
values: Dict[TaskHandle, Any] = {}
|
| 642 |
+
if self.cached_values:
|
| 643 |
+
for task, value in self.cached_values.items():
|
| 644 |
+
values[task] = value
|
| 645 |
+
|
| 646 |
+
is_gpu_execution = self.math_device.type != "cpu"
|
| 647 |
+
accelerator = get_torch_accelerator_module(self.math_device.type) if is_gpu_execution else None
|
| 648 |
+
|
| 649 |
+
for idx, task_handle in (
|
| 650 |
+
pbar := tqdm.tqdm(
|
| 651 |
+
list(enumerate(self.schedule.tasks)),
|
| 652 |
+
disable=quiet,
|
| 653 |
+
desc=desc or "Executing graph",
|
| 654 |
+
)
|
| 655 |
+
):
|
| 656 |
+
task = task_handle.task()
|
| 657 |
+
task_type = type(task).__name__
|
| 658 |
+
|
| 659 |
+
# Log memory stats periodically
|
| 660 |
+
if is_gpu_execution and idx % 10 == 0:
|
| 661 |
+
stats = self._get_memory_stats()
|
| 662 |
+
LOG.debug(
|
| 663 |
+
f"Memory: {stats.get('allocated_gb', 0):.2f}GB allocated, "
|
| 664 |
+
f"{stats.get('free_gb', 0):.2f}GB free of {stats.get('total_gb', 0):.2f}GB"
|
| 665 |
+
)
|
| 666 |
+
|
| 667 |
+
# Determine execution strategy
|
| 668 |
+
is_cpu_only_task = task_type in CPU_ONLY_TASKS
|
| 669 |
+
want_gpu = is_gpu_execution and task.uses_accelerator() and not is_cpu_only_task
|
| 670 |
+
|
| 671 |
+
# Collect arguments
|
| 672 |
+
arguments = {k: values[h] for k, h in task_handle.arguments().items()}
|
| 673 |
+
|
| 674 |
+
success = False
|
| 675 |
+
|
| 676 |
+
# Try GPU execution
|
| 677 |
+
if want_gpu:
|
| 678 |
+
try:
|
| 679 |
+
res = self._execute_with_fallback(task, arguments, accelerator)
|
| 680 |
+
values[task_handle] = res
|
| 681 |
+
success = True
|
| 682 |
+
except torch.OutOfMemoryError:
|
| 683 |
+
LOG.warning(f"All GPU strategies exhausted for {task_type}, falling back to CPU")
|
| 684 |
+
success = False
|
| 685 |
+
except Exception as e:
|
| 686 |
+
LOG.error(f"GPU execution failed for {task_type}: {e}")
|
| 687 |
+
success = False
|
| 688 |
+
|
| 689 |
+
# Cleanup after GPU attempt
|
| 690 |
+
if is_gpu_execution and ENABLE_AGGRESSIVE_CLEANUP:
|
| 691 |
+
gc.collect()
|
| 692 |
+
if accelerator:
|
| 693 |
+
accelerator.empty_cache()
|
| 694 |
+
|
| 695 |
+
# CPU fallback
|
| 696 |
+
if not success:
|
| 697 |
+
if want_gpu:
|
| 698 |
+
LOG.info(f"Executing {task_type} on CPU")
|
| 699 |
+
|
| 700 |
+
# Ensure cleanup before CPU execution
|
| 701 |
+
if is_gpu_execution:
|
| 702 |
+
gc.collect()
|
| 703 |
+
if accelerator:
|
| 704 |
+
accelerator.empty_cache()
|
| 705 |
+
|
| 706 |
+
# Move arguments to CPU
|
| 707 |
+
cpu_arguments = {
|
| 708 |
+
k: self._move_tensors(v, torch.device("cpu"))
|
| 709 |
+
for k, v in arguments.items()
|
| 710 |
+
}
|
| 711 |
+
|
| 712 |
+
res = task.execute(**cpu_arguments)
|
| 713 |
+
del cpu_arguments
|
| 714 |
+
res = self._move_tensors(res, self.storage_device)
|
| 715 |
+
values[task_handle] = res
|
| 716 |
+
|
| 717 |
+
del res
|
| 718 |
+
del arguments
|
| 719 |
+
|
| 720 |
+
if task_handle in self.targets:
|
| 721 |
+
yield (task_handle, values[task_handle])
|
| 722 |
+
|
| 723 |
+
# Evict unreferenced values
|
| 724 |
+
expired = []
|
| 725 |
+
for key in values:
|
| 726 |
+
if idx >= last_use_index[key]:
|
| 727 |
+
expired.append(key)
|
| 728 |
+
for key in expired:
|
| 729 |
+
del values[key]
|
| 730 |
+
|
| 731 |
+
# Periodic cleanup (measure.py strategy)
|
| 732 |
+
self._task_counter += 1
|
| 733 |
+
if is_gpu_execution and ENABLE_AGGRESSIVE_CLEANUP:
|
| 734 |
+
if CLEANUP_FREQUENCY == 0 or self._task_counter % max(1, CLEANUP_FREQUENCY) == 0:
|
| 735 |
+
gc.collect()
|
| 736 |
+
if accelerator:
|
| 737 |
+
accelerator.empty_cache()
|
| 738 |
+
|
| 739 |
+
del values
|
| 740 |
+
del pbar
|
| 741 |
+
|
| 742 |
+
def run(
|
| 743 |
+
self,
|
| 744 |
+
quiet: bool = False,
|
| 745 |
+
desc: Optional[str] = None,
|
| 746 |
+
) -> Iterator[Tuple[Task, Any]]:
|
| 747 |
+
for handle, value in self._run(quiet=quiet, desc=desc):
|
| 748 |
+
yield (handle.task(), value)
|
| 749 |
+
|
| 750 |
+
def execute(self, desc: Optional[str] = None) -> None:
|
| 751 |
+
for _ in self.run(desc=desc):
|
| 752 |
+
pass
|
| 753 |
+
|
| 754 |
+
def _move_tensors(
|
| 755 |
+
self, value: Any, device: torch.device, non_blocking: Optional[bool] = None
|
| 756 |
+
) -> Any:
|
| 757 |
+
"""Move tensors to specified device, handling nested structures."""
|
| 758 |
+
if non_blocking is None:
|
| 759 |
+
non_blocking = device.type in ["cuda", "xpu"]
|
| 760 |
+
|
| 761 |
+
if isinstance(value, torch.Tensor):
|
| 762 |
+
if value.device == device:
|
| 763 |
+
return value
|
| 764 |
+
return value.to(device=device, non_blocking=non_blocking)
|
| 765 |
+
elif isinstance(value, dict):
|
| 766 |
+
return {
|
| 767 |
+
k: self._move_tensors(v, device, non_blocking)
|
| 768 |
+
for k, v in value.items()
|
| 769 |
+
}
|
| 770 |
+
elif isinstance(value, list):
|
| 771 |
+
return [self._move_tensors(v, device, non_blocking) for v in value]
|
| 772 |
+
elif isinstance(value, tuple):
|
| 773 |
+
return tuple(self._move_tensors(v, device, non_blocking) for v in value)
|
| 774 |
+
|
| 775 |
+
return value
|