File size: 55,560 Bytes
a042349 d9ef651 a042349 a1c511d d9ef651 a042349 d9ef651 a1c511d a042349 a1c511d a042349 d9ef651 a042349 a1c511d d9ef651 a1c511d a042349 a1c511d d9ef651 a042349 a1c511d a042349 a1c511d a042349 a1c511d a042349 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 |
# leaderboard/app.py
import pandas as pd, numpy as np, matplotlib.pyplot as plt, gradio as gr
import pathlib
import json
import csv
CATEGORY_MAP = {
"Overall": ["Overall Pass Rate"],
# You can define sets, e.g. "Vision-hard": ["Squiggle", "Shadow_Plausible"]
}
def get_results_path():
"""Get the path to results.csv, resolving relative to this file's location."""
this_file = pathlib.Path(__file__).resolve()
results_path = this_file.parent / "results.csv"
return results_path
def get_runs_path():
"""Get the path to runs directory, resolving relative to this file's location."""
this_file = pathlib.Path(__file__).resolve()
runs_path = this_file.parent / "runs"
runs_path.mkdir(parents=True, exist_ok=True)
return runs_path
def infer_type(row):
"""Infer model type (Proprietary/Open source) from Provider or Model name."""
provider = str(row.get("Provider", "")).lower()
model = str(row.get("Model", "")).lower()
# Open source indicators
open_source_keywords = [
"llama", "mistral", "qwen", "phi", "gemma", "falcon", "mpt",
"vicuna", "alpaca", "wizard", "openchat", "neural-chat",
"browser-use", "browseruse", "open source", "opensource"
]
# Check if any open source keyword appears
for keyword in open_source_keywords:
if keyword in provider or keyword in model:
return "Open source"
# Default to Proprietary if not found
return "Proprietary"
def load_df(path=None):
"""Load the results CSV, creating empty dataframe if file doesn't exist."""
if path is None:
path = get_results_path()
metadata_cols = ["Model", "Provider", "Agent Framework", "Type"]
metric_cols = ["Overall Pass Rate", "Avg Duration (s)", "Avg Cost ($)"]
expected_cols = metadata_cols + metric_cols
if not pathlib.Path(path).exists():
# Return empty dataframe with expected columns
return pd.DataFrame(columns=expected_cols)
try:
df = pd.read_csv(path)
# Handle empty CSV (only headers)
if len(df) == 0:
return pd.DataFrame(columns=expected_cols)
# Ensure required columns exist
if "Agent Framework" not in df.columns:
# Try legacy "Notes" column
if "Notes" in df.columns:
df["Agent Framework"] = df["Notes"]
else:
df["Agent Framework"] = ""
# Handle legacy "Overall" column
if "Overall" in df.columns and "Overall Pass Rate" not in df.columns:
df["Overall Pass Rate"] = df["Overall"]
# Add Type column if missing, infer from Provider/Model
if "Type" not in df.columns:
df["Type"] = df.apply(infer_type, axis=1)
# Convert numeric columns
numeric_cols = metric_cols + [c for c in df.columns if c not in metadata_cols + metric_cols]
for c in numeric_cols:
if c in df.columns:
df[c] = pd.to_numeric(df[c], errors="coerce")
return df
except Exception as e:
print(f"Error loading results.csv: {e}")
return pd.DataFrame(columns=expected_cols)
def compute_score(df, category):
# Get columns to compute score from
# Map "Overall" category to "Overall Pass Rate" column
if category == "Overall":
# Use CATEGORY_MAP which maps "Overall" to ["Overall Pass Rate"]
cols = CATEGORY_MAP.get("Overall", ["Overall Pass Rate"])
elif category in CATEGORY_MAP:
# Use predefined category mapping
cols = CATEGORY_MAP[category]
elif category in df.columns:
# Category is a direct column name
cols = [category]
else:
# Fallback: use "Overall Pass Rate" if it exists, otherwise all numeric columns
if "Overall Pass Rate" in df.columns:
cols = ["Overall Pass Rate"]
else:
numeric_cols = [c for c in df.columns if c not in ["Model", "Provider", "Agent Framework", "Type"]]
cols = numeric_cols if numeric_cols else []
# Filter to only existing columns
cols = [c for c in cols if c in df.columns]
# If no valid columns found, use all numeric columns except metadata/metrics
if not cols:
exclude_cols = ["Model", "Provider", "Agent Framework", "Type", "Avg Duration (s)", "Avg Cost ($)"]
numeric_cols = [c for c in df.columns if c not in exclude_cols]
cols = numeric_cols if numeric_cols else []
# If still no columns, create a zero score
if not cols:
df = df.copy()
df["Category Pass Rate"] = 0.0
return df
df = df.copy()
if cols:
df["Category Pass Rate"] = df[cols].mean(axis=1, skipna=True)
else:
df["Category Pass Rate"] = 0.0
return df
def table_html(df):
if len(df) == 0:
return """
<style>
.leaderboard-container {
background: #ffffff;
border-radius: 8px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
overflow: hidden;
margin: 20px 0;
}
table.lb {
width: 100%;
border-collapse: collapse;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif;
font-size: 14px;
}
table.lb thead {
background: linear-gradient(135deg, #6366f1 0%, #8b5cf6 50%, #a855f7 100%);
color: white;
}
table.lb th {
padding: 16px 20px;
text-align: left;
font-weight: 600;
font-size: 13px;
text-transform: uppercase;
letter-spacing: 0.5px;
}
table.lb td {
padding: 16px 20px;
border-bottom: 1px solid #e5e7eb;
color: #374151;
}
table.lb tbody tr {
transition: background-color 0.2s ease;
}
table.lb tbody tr:hover {
background: #f9fafb;
}
table.lb tbody tr:last-child td {
border-bottom: none;
}
.rank-badge {
display: inline-block;
width: 32px;
height: 32px;
line-height: 32px;
text-align: center;
border-radius: 50%;
font-weight: 700;
font-size: 14px;
}
.rank-1 { background: linear-gradient(135deg, #ffd700 0%, #ffed4e 100%); color: #000; box-shadow: 0 2px 8px rgba(255, 215, 0, 0.4); }
.rank-2 { background: linear-gradient(135deg, #c0c0c0 0%, #e8e8e8 100%); color: #000; box-shadow: 0 2px 8px rgba(192, 192, 192, 0.4); }
.rank-3 { background: linear-gradient(135deg, #cd7f32 0%, #e6a55d 100%); color: #fff; box-shadow: 0 2px 8px rgba(205, 127, 50, 0.4); }
.rank-other { background: #f1f5f9; color: #64748b; }
.pass-rate-cell {
font-weight: 600;
font-size: 15px;
}
.metric-cell {
font-weight: 500;
font-size: 14px;
color: #6b7280;
}
</style>
<div class="leaderboard-container">
<table class="lb">
<thead><tr><th>#</th><th>Model</th><th>Provider</th><th>Type</th><th>Agent Framework</th><th>Pass Rate</th><th>Avg Duration (s)</th><th>Avg Cost ($)</th></tr></thead>
<tbody><tr><td colspan="8" style="text-align:center;padding:40px;color:#9ca3af;font-size:16px;">No results yet. Run evaluations to populate the leaderboard.</td></tr></tbody>
</table>
</div>
"""
rows = []
for i, r in df.iterrows():
rank = i + 1
rank_class = "rank-1" if rank == 1 else "rank-2" if rank == 2 else "rank-3" if rank == 3 else "rank-other"
pass_rate = r['Category Pass Rate']
pass_rate_color = "#10b981" if pass_rate >= 0.7 else "#f59e0b" if pass_rate >= 0.4 else "#ef4444"
# Format duration and cost
duration = r.get('Avg Duration (s)', None)
duration_str = f"{duration:.2f}" if pd.notna(duration) and duration is not None else "N/A"
cost = r.get('Avg Cost ($)', None)
cost_str = f"${cost:.4f}" if pd.notna(cost) and cost is not None else "N/A"
type_val = r.get('Type', 'Proprietary')
type_color = "#10b981" if type_val == "Open source" else "#6366f1"
rows.append(f"""
<tr>
<td><span class="rank-badge {rank_class}">{rank}</span></td>
<td><strong style="color: #111827;">{r['Model']}</strong></td>
<td style="color: #6b7280;">{r.get('Provider','')}</td>
<td><span style="color: {type_color}; font-weight: 600;">{type_val}</span></td>
<td style="color: #6b7280;">{r.get('Agent Framework','')}</td>
<td class="pass-rate-cell" style="color: {pass_rate_color};">{pass_rate:.3f}</td>
<td class="metric-cell">{duration_str}</td>
<td class="metric-cell">{cost_str}</td>
</tr>""")
return f"""
<style>
.leaderboard-container {{
background: #ffffff;
border-radius: 8px;
box-shadow: 0 2px 8px rgba(0,0,0,0.1);
overflow: hidden;
margin: 20px 0;
}}
table.lb {{
width: 100%;
border-collapse: collapse;
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif;
font-size: 14px;
}}
table.lb thead {{
background: linear-gradient(135deg, #6366f1 0%, #8b5cf6 50%, #a855f7 100%);
color: white;
}}
table.lb th {{
padding: 16px 20px;
text-align: left;
font-weight: 600;
font-size: 13px;
text-transform: uppercase;
letter-spacing: 0.5px;
}}
table.lb td {{
padding: 16px 20px;
border-bottom: 1px solid #e5e7eb;
color: #374151;
}}
table.lb tbody tr {{
transition: background-color 0.2s ease;
}}
table.lb tbody tr:hover {{
background: #f9fafb;
}}
table.lb tbody tr:last-child td {{
border-bottom: none;
}}
.rank-badge {{
display: inline-block;
width: 32px;
height: 32px;
line-height: 32px;
text-align: center;
border-radius: 50%;
font-weight: 700;
font-size: 14px;
}}
.rank-1 {{ background: linear-gradient(135deg, #ffd700 0%, #ffed4e 100%); color: #000; box-shadow: 0 2px 8px rgba(255, 215, 0, 0.4); }}
.rank-2 {{ background: linear-gradient(135deg, #c0c0c0 0%, #e8e8e8 100%); color: #000; box-shadow: 0 2px 8px rgba(192, 192, 192, 0.4); }}
.rank-3 {{ background: linear-gradient(135deg, #cd7f32 0%, #e6a55d 100%); color: #fff; box-shadow: 0 2px 8px rgba(205, 127, 50, 0.4); }}
.rank-other {{ background: #f1f5f9; color: #64748b; }}
.pass-rate-cell {{
font-weight: 600;
font-size: 15px;
}}
.metric-cell {{
font-weight: 500;
font-size: 14px;
color: #6b7280;
}}
</style>
<div class="leaderboard-container">
<table class="lb">
<thead><tr><th>#</th><th>Model</th><th>Provider</th><th>Type</th><th>Agent Framework</th><th>Pass Rate</th><th>Avg Duration (s)</th><th>Avg Cost ($)</th></tr></thead>
<tbody>{''.join(rows)}</tbody>
</table>
</div>
"""
def perf_bar(df):
plt.close("all")
if len(df) == 0:
fig, ax = plt.subplots(figsize=(10, 4), facecolor='white', dpi=150)
ax.text(0.5, 0.5, "No data available", ha="center", va="center", fontsize=14, color="gray")
ax.set_xlim(0, 1); ax.set_ylim(0, 1); ax.axis("off")
fig.tight_layout(); return fig
d = df.sort_values("Category Pass Rate", ascending=True)
fig, ax = plt.subplots(figsize=(10, max(4, 0.5*len(d))), facecolor='white', dpi=150)
# Create gradient colors based on pass rate - CAPTCHA themed
colors = []
for pass_rate in d["Category Pass Rate"]:
if pass_rate >= 0.7:
colors.append('#10b981') # verification green
elif pass_rate >= 0.4:
colors.append('#f59e0b') # warning amber
else:
colors.append('#ef4444') # error red
bars = ax.barh(range(len(d)), d["Category Pass Rate"], color=colors, alpha=0.8, edgecolor='white', linewidth=1.5)
# Add value labels on bars
for i, (bar, pass_rate) in enumerate(zip(bars, d["Category Pass Rate"])):
width = bar.get_width()
ax.text(width + 0.01, bar.get_y() + bar.get_height()/2,
f'{pass_rate:.3f}', ha='left', va='center', fontsize=11, fontweight='600')
ax.set_yticks(range(len(d)))
ax.set_yticklabels(d["Model"], fontsize=12)
ax.set_xlabel("Pass Rate", fontsize=12, fontweight='600', color='#374151')
ax.set_xlim(0, 1.1)
ax.set_title("Performance Comparison", fontsize=16, fontweight='700', color='#111827', pad=20)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#e5e7eb')
ax.spines['bottom'].set_color('#e5e7eb')
ax.grid(axis='x', alpha=0.3, linestyle='--')
ax.set_facecolor('#fafafa')
fig.tight_layout()
return fig
def perf_by_type(df_full, model_filter="Models Avg"):
"""
Show average performance by puzzle type.
Args:
df_full: Full dataframe with all models
model_filter: "Models Avg" for average across all models, or a specific model name
"""
plt.close("all")
# Filter by model if specified
if model_filter and model_filter != "Models Avg":
df_filtered = df_full[df_full["Model"] == model_filter].copy()
if len(df_filtered) == 0:
fig, ax = plt.subplots(figsize=(12, 5), facecolor='white', dpi=150)
ax.text(0.5, 0.5, f"No data available for model: {model_filter}", ha="center", va="center", fontsize=14, color="gray")
ax.set_xlim(0, 1); ax.set_ylim(0, 1); ax.axis("off")
fig.tight_layout(); return fig
df_plot = df_filtered
plot_title = f"Performance by Type - {model_filter}"
else:
df_plot = df_full
plot_title = "Average Performance by CAPTCHA Type (All Models)"
if len(df_plot) == 0:
fig, ax = plt.subplots(figsize=(12, 5), facecolor='white', dpi=150)
ax.text(0.5, 0.5, "No data available", ha="center", va="center", fontsize=14, color="gray")
ax.set_xlim(0, 1); ax.set_ylim(0, 1); ax.axis("off")
fig.tight_layout(); return fig
# Average each per-type column across models (exclude metadata and metric columns)
exclude_cols = ["Model", "Provider", "Agent Framework", "Type", "Overall Pass Rate", "Avg Duration (s)", "Avg Cost ($)", "Category Pass Rate"]
numeric_cols = [c for c in df_plot.columns if c not in exclude_cols]
type_cols = [c for c in numeric_cols if df_plot[c].notna().any() and df_plot[c].dtype in ['float64', 'int64', 'float32', 'int32']]
if len(type_cols) == 0:
fig, ax = plt.subplots(figsize=(12, 5), facecolor='white', dpi=150)
ax.text(0.5, 0.5, "No per-type data available", ha="center", va="center", fontsize=14, color="gray")
ax.set_xlim(0, 1); ax.set_ylim(0, 1); ax.axis("off")
fig.tight_layout(); return fig
# Calculate means, handling NaN values properly
if model_filter == "Models Avg":
# Average across all models
means = df_plot[type_cols].mean(numeric_only=True)
else:
# For a single model, just get its values (should be one row)
if len(df_plot) == 1:
means = df_plot[type_cols].iloc[0]
else:
# If multiple rows (shouldn't happen), average them
means = df_plot[type_cols].mean(numeric_only=True)
# Filter out any NaN means
means = means.dropna()
if len(means) == 0:
fig, ax = plt.subplots(figsize=(12, 5), facecolor='white', dpi=150)
ax.text(0.5, 0.5, "No valid per-type data available", ha="center", va="center", fontsize=14, color="gray")
ax.set_xlim(0, 1); ax.set_ylim(0, 1); ax.axis("off")
fig.tight_layout(); return fig
fig, ax = plt.subplots(figsize=(max(12, len(means) * 0.8), 6), facecolor='white', dpi=150)
# Create gradient colors based on performance - CAPTCHA themed
colors = []
for val in means.values:
if pd.isna(val):
colors.append('#94a3b8') # slate gray for NaN
elif val >= 0.7:
colors.append('#10b981') # verification green
elif val >= 0.4:
colors.append('#f59e0b') # warning amber
else:
colors.append('#ef4444') # error red
bars = ax.bar(range(len(means)), means.values, color=colors, alpha=0.8, edgecolor='white', linewidth=1.5)
# Add value labels on bars
for bar, val in zip(bars, means.values):
if not pd.isna(val):
height = bar.get_height()
ax.text(bar.get_x() + bar.get_width()/2., height + 0.01,
f'{val:.2f}', ha='center', va='bottom', fontsize=10, fontweight='600')
ax.set_xticks(range(len(means)))
ax.set_xticklabels(means.index, rotation=45, ha="right", fontsize=10)
ax.set_ylim(0, max(1.1, means.max() * 1.1) if not means.empty else 1.1)
ax.set_ylabel("Average Pass Rate", fontsize=12, fontweight='600', color='#374151')
ax.set_title(plot_title, fontsize=16, fontweight='700', color='#111827', pad=20)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#e5e7eb')
ax.spines['bottom'].set_color('#e5e7eb')
ax.grid(axis='y', alpha=0.3, linestyle='--')
ax.set_facecolor('#fafafa')
fig.tight_layout()
return fig
def cost_effectiveness_plot(df):
"""
Create a cost-effectiveness scatter plot: Performance (X) vs Cost (Y).
Color-coded by Type (Proprietary vs Open source).
"""
plt.close("all")
if len(df) == 0:
fig, ax = plt.subplots(figsize=(10, 6), facecolor='white', dpi=150)
ax.text(0.5, 0.5, "No data available", ha="center", va="center", fontsize=14, color="gray")
ax.set_xlim(0, 1); ax.set_ylim(0, 1); ax.axis("off")
fig.tight_layout(); return fig
# Filter to rows with valid performance and cost data
df_plot = df.copy()
df_plot = df_plot[df_plot['Category Pass Rate'].notna() & df_plot['Avg Cost ($)'].notna()]
if len(df_plot) == 0:
fig, ax = plt.subplots(figsize=(10, 6), facecolor='white', dpi=150)
ax.text(0.5, 0.5, "No data with both performance and cost metrics", ha="center", va="center", fontsize=14, color="gray")
ax.set_xlim(0, 1); ax.set_ylim(0, 1); ax.axis("off")
fig.tight_layout(); return fig
# Create figure with higher DPI for better resolution
fig, ax = plt.subplots(figsize=(14, 9), facecolor='white', dpi=150)
# Separate by type
proprietary = df_plot[df_plot.get('Type', 'Proprietary') == 'Proprietary']
open_source = df_plot[df_plot.get('Type', 'Proprietary') == 'Open source']
# Plot points
if len(proprietary) > 0:
ax.scatter(proprietary['Category Pass Rate'], proprietary['Avg Cost ($)'],
c='#6366f1', s=200, alpha=0.75, edgecolors='white', linewidth=2.5,
label='Proprietary', zorder=3)
# Add labels for proprietary models
for idx, row in proprietary.iterrows():
ax.annotate(row['Model'],
(row['Category Pass Rate'], row['Avg Cost ($)']),
fontsize=10, alpha=0.85, ha='left', va='bottom',
bbox=dict(boxstyle='round,pad=0.3', facecolor='white', alpha=0.7, edgecolor='none'))
if len(open_source) > 0:
ax.scatter(open_source['Category Pass Rate'], open_source['Avg Cost ($)'],
c='#10b981', s=200, alpha=0.75, edgecolors='white', linewidth=2.5,
label='Open source', zorder=3)
# Add labels for open source models
for idx, row in open_source.iterrows():
ax.annotate(row['Model'],
(row['Category Pass Rate'], row['Avg Cost ($)']),
fontsize=10, alpha=0.85, ha='left', va='bottom',
bbox=dict(boxstyle='round,pad=0.3', facecolor='white', alpha=0.7, edgecolor='none'))
# Calculate thresholds for quadrants (median or fixed thresholds)
perf_threshold = df_plot['Category Pass Rate'].median() if len(df_plot) > 1 else 0.4
cost_threshold = df_plot['Avg Cost ($)'].median() if len(df_plot) > 1 else 0.01
# Add quadrant lines
ax.axvline(x=perf_threshold, color='gray', linestyle='--', linewidth=1.5, alpha=0.5, zorder=1)
ax.axhline(y=cost_threshold, color='gray', linestyle='--', linewidth=1.5, alpha=0.5, zorder=1)
# Add quadrant annotations
x_range = df_plot['Category Pass Rate'].max() - df_plot['Category Pass Rate'].min()
y_range = df_plot['Avg Cost ($)'].max() - df_plot['Avg Cost ($)'].min()
# Top-left: Low Performance, High Cost
ax.text(df_plot['Category Pass Rate'].min() + x_range * 0.05,
df_plot['Avg Cost ($)'].max() - y_range * 0.05,
'▲ Low Performance\nHigh Cost',
fontsize=12, color='#ef4444', weight='bold',
ha='left', va='top', alpha=0.8,
bbox=dict(boxstyle='round,pad=0.5', facecolor='white', alpha=0.8, edgecolor='#ef4444', linewidth=1.5))
# Bottom-right: High Performance, Low Cost
ax.text(df_plot['Category Pass Rate'].max() - x_range * 0.05,
df_plot['Avg Cost ($)'].min() + y_range * 0.05,
'▼ High Performance\nLow Cost',
fontsize=12, color='#10b981', weight='bold',
ha='right', va='bottom', alpha=0.8,
bbox=dict(boxstyle='round,pad=0.5', facecolor='white', alpha=0.8, edgecolor='#10b981', linewidth=1.5))
# Styling
ax.set_xlabel("Performance (Pass Rate)", fontsize=14, fontweight='600', color='#374151')
ax.set_ylabel("Avg Cost ($)", fontsize=14, fontweight='600', color='#374151')
ax.set_title("Cost-Effectiveness Analysis", fontsize=17, fontweight='700', color='#111827', pad=25)
# Add padding to axes (more padding on right for legend space)
x_pad = x_range * 0.15 if x_range > 0 else 0.1
y_pad = y_range * 0.15 if y_range > 0 else 0.001
ax.set_xlim(df_plot['Category Pass Rate'].min() - x_pad * 0.5, df_plot['Category Pass Rate'].max() + x_pad)
ax.set_ylim(max(0, df_plot['Avg Cost ($)'].min() - y_pad * 0.5), df_plot['Avg Cost ($)'].max() + y_pad)
ax.spines['top'].set_visible(False)
ax.spines['right'].set_visible(False)
ax.spines['left'].set_color('#e5e7eb')
ax.spines['bottom'].set_color('#e5e7eb')
ax.grid(alpha=0.3, linestyle='--', zorder=0, linewidth=1)
ax.set_facecolor('#fafafa')
# Add legend - position it outside the plot area to avoid covering data
# Use bbox_to_anchor to place it outside the plot
ax.legend(loc='upper left', bbox_to_anchor=(1.02, 1), frameon=True,
fancybox=True, shadow=True, fontsize=12, framealpha=0.95,
edgecolor='#e5e7eb', facecolor='white')
# Adjust layout to make room for legend
fig.tight_layout(rect=[0, 0, 0.95, 1])
return fig
def convert_benchmark_results_json(file_path, model_name=None, provider=None, agent_framework=None):
"""
Convert benchmark_results.json format (per-puzzle results) to aggregated format.
Args:
file_path: Path to benchmark_results.json file (Path object or string)
model_name: Model name (if None, will try to infer from filename or use "Unknown")
provider: Provider name (if None, will try to infer from model_name)
agent_framework: Agent framework name (if None, will use "browser-use" as default)
Returns:
dict: Aggregated record with Model, Provider, Agent Framework, Type, metrics, and per-type pass rates
"""
# Convert to Path object if needed
file_path = pathlib.Path(file_path) if not isinstance(file_path, pathlib.Path) else file_path
# Read the file - it's a JSONL file (one JSON object per line)
puzzle_results = []
with open(file_path, 'r') as f:
for line in f:
line = line.strip()
if line:
try:
puzzle_results.append(json.loads(line))
except json.JSONDecodeError:
continue
if not puzzle_results:
raise ValueError("No valid puzzle results found in file")
# Try to extract model/provider from puzzle results first (if they were included)
extracted_model = None
extracted_provider = None
extracted_agent_framework = None
for result in puzzle_results[:10]: # Check first 10 results
if 'model' in result and result['model']:
extracted_model = result['model']
if 'provider' in result and result['provider']:
extracted_provider = result['provider']
if 'agent_framework' in result and result['agent_framework']:
extracted_agent_framework = result['agent_framework']
# Also check camelCase variants
if 'agentFramework' in result and result['agentFramework']:
extracted_agent_framework = result['agentFramework']
# Use extracted values if available, otherwise use provided parameters
if model_name is None:
model_name = extracted_model
if provider is None:
provider = extracted_provider
if agent_framework is None:
agent_framework = extracted_agent_framework
# Infer model/provider if still not available
if model_name is None:
# Try to infer from filename (e.g., "gpt-4_results.json" -> "gpt-4")
filename = file_path.stem.lower()
if 'benchmark_results' in filename:
model_name = "Unknown Model"
else:
# Try to extract model name from filename
model_name = filename.replace('_results', '').replace('_benchmark', '').replace('-', ' ').title()
if provider is None:
# Try to infer provider from model name
model_lower = model_name.lower()
if any(x in model_lower for x in ['gpt', 'openai']):
provider = "OpenAI"
elif any(x in model_lower for x in ['claude', 'anthropic']):
provider = "Anthropic"
elif any(x in model_lower for x in ['gemini', 'google']):
provider = "Google"
elif any(x in model_lower for x in ['llama', 'mistral', 'qwen', 'phi', 'gemma']):
provider = "Open Source"
else:
provider = "Unknown"
if agent_framework is None:
agent_framework = "browser-use" # Default assumption
# Aggregate results
# Group by puzzle_type
puzzle_type_stats = {}
total_correct = 0
total_attempts = len(puzzle_results)
total_duration = 0.0
total_cost = 0.0
cost_count = 0
for result in puzzle_results:
puzzle_type = result.get('puzzle_type', 'Unknown')
# Initialize puzzle type stats if needed
if puzzle_type not in puzzle_type_stats:
puzzle_type_stats[puzzle_type] = {'correct': 0, 'total': 0}
puzzle_type_stats[puzzle_type]['total'] += 1
if result.get('correct', False):
puzzle_type_stats[puzzle_type]['correct'] += 1
total_correct += 1
# Aggregate duration
elapsed_time = result.get('elapsed_time')
if elapsed_time is not None:
try:
total_duration += float(elapsed_time)
except (ValueError, TypeError):
pass
# Aggregate cost
cost = result.get('cost')
if cost is not None:
try:
total_cost += float(cost)
cost_count += 1
except (ValueError, TypeError):
pass
# Calculate overall pass rate
overall_pass_rate = total_correct / total_attempts if total_attempts > 0 else 0.0
# Calculate average duration
avg_duration = total_duration / total_attempts if total_attempts > 0 else None
# Calculate average cost
avg_cost = total_cost / cost_count if cost_count > 0 else None
# Build aggregated record
record = {
"Model": model_name,
"Provider": provider,
"Agent Framework": agent_framework,
"Overall Pass Rate": overall_pass_rate,
"Avg Duration (s)": avg_duration,
"Avg Cost ($)": avg_cost,
}
# Add per-type pass rates
for puzzle_type, stats in puzzle_type_stats.items():
pass_rate = stats['correct'] / stats['total'] if stats['total'] > 0 else 0.0
record[puzzle_type] = pass_rate
# Infer Type
record["Type"] = infer_type(record)
return record
def is_benchmark_results_format(data):
"""
Check if the data is in benchmark_results.json format (per-puzzle results).
Args:
data: List of dictionaries or single dictionary
Returns:
bool: True if data appears to be in benchmark_results format
"""
if isinstance(data, dict):
data = [data]
if not isinstance(data, list) or len(data) == 0:
return False
# Check if first record has benchmark_results.json structure
first = data[0]
required_fields = ['puzzle_type', 'puzzle_id', 'correct']
has_required = all(field in first for field in required_fields)
# Check if it's NOT the aggregated format (which would have Model, Provider, etc.)
aggregated_fields = ['Model', 'Provider', 'Overall Pass Rate']
is_not_aggregated = not any(field in first for field in aggregated_fields)
return has_required and is_not_aggregated
def process_uploaded_file(file, model_name=None, provider=None, agent_framework=None):
"""
Process an uploaded CSV or JSON file and merge with existing results.
Args:
file: File path string (from Gradio File component with type="filepath")
model_name: Optional model name (for benchmark_results.json conversion)
provider: Optional provider name (for benchmark_results.json conversion)
agent_framework: Optional agent framework name (for benchmark_results.json conversion)
Returns:
tuple: (success_message, error_message)
"""
if file is None:
return None, "No file uploaded"
try:
# Gradio returns a file path string when type="filepath"
file_path = pathlib.Path(file) if isinstance(file, str) else pathlib.Path(file.name)
# Read the file based on extension
if file_path.suffix.lower() == '.json':
# Try reading as JSONL first (benchmark_results.json format)
try:
# Read first few lines to detect format
with open(file_path, 'r') as f:
first_lines = [f.readline().strip() for _ in range(5)]
f.seek(0)
# Try to parse as JSONL (one JSON object per line)
puzzle_results = []
for line in first_lines:
if line:
try:
puzzle_results.append(json.loads(line))
except json.JSONDecodeError:
break
# Check if it's benchmark_results format
if puzzle_results and is_benchmark_results_format(puzzle_results):
# Read entire file as JSONL
puzzle_results = []
with open(file_path, 'r') as f:
for line in f:
line = line.strip()
if line:
try:
puzzle_results.append(json.loads(line))
except json.JSONDecodeError:
continue
# Convert to aggregated format
record = convert_benchmark_results_json(
file_path,
model_name=model_name,
provider=provider,
agent_framework=agent_framework
)
records = [record]
else:
# Try reading as regular JSON
f.seek(0)
data = json.load(f)
# Normalize to list of records
if isinstance(data, dict):
records = [data]
elif isinstance(data, list):
records = data
else:
return None, f"Invalid JSON format: expected object or array, got {type(data).__name__}"
# Check if it's benchmark_results format
if is_benchmark_results_format(records):
# Convert to aggregated format
record = convert_benchmark_results_json(
file_path,
model_name=model_name,
provider=provider,
agent_framework=agent_framework
)
records = [record]
except Exception as e:
# Fallback: try reading as regular JSON
try:
with open(file_path, 'r') as f:
data = json.load(f)
# Normalize to list of records
if isinstance(data, dict):
records = [data]
elif isinstance(data, list):
records = data
else:
return None, f"Invalid JSON format: expected object or array, got {type(data).__name__}"
# Check if it's benchmark_results format
if is_benchmark_results_format(records):
# Convert to aggregated format
record = convert_benchmark_results_json(
file_path,
model_name=model_name,
provider=provider,
agent_framework=agent_framework
)
records = [record]
except Exception as json_err:
return None, f"Error reading JSON file: {str(json_err)}"
# Handle legacy column names
legacy_map = {"Notes": "Agent Framework", "Overall": "Overall Pass Rate"}
for record in records:
for old_key, new_key in legacy_map.items():
if old_key in record and new_key not in record:
record[new_key] = record.pop(old_key)
# Infer Type if not present
if "Type" not in record:
record["Type"] = infer_type(record)
# Save individual JSON files to runs directory for aggregation
runs_path = get_runs_path()
import time
for record in records:
run_file = runs_path / f"run_{int(time.time() * 1000)}.json"
with open(run_file, 'w') as f:
json.dump(record, f, indent=2)
num_records = len(records)
elif file_path.suffix.lower() == '.csv':
# Handle CSV file
df_uploaded = pd.read_csv(file_path)
# Handle legacy column names
if "Notes" in df_uploaded.columns and "Agent Framework" not in df_uploaded.columns:
df_uploaded["Agent Framework"] = df_uploaded["Notes"]
if "Overall" in df_uploaded.columns and "Overall Pass Rate" not in df_uploaded.columns:
df_uploaded["Overall Pass Rate"] = df_uploaded["Overall"]
# Add Type column if missing
if "Type" not in df_uploaded.columns:
df_uploaded["Type"] = df_uploaded.apply(infer_type, axis=1)
# Convert to records and save as JSON files (for consistency with aggregation script)
records = df_uploaded.to_dict('records')
runs_path = get_runs_path()
import time
for record in records:
run_file = runs_path / f"run_{int(time.time() * 1000)}.json"
with open(run_file, 'w') as f:
json.dump(record, f, indent=2)
num_records = len(records)
else:
return None, f"Unsupported file type: {file_path.suffix}. Please upload a .csv or .json file."
# Aggregate runs into results.csv
aggregate_runs_to_csv()
return f"✅ Successfully uploaded {num_records} record(s). Leaderboard updated!", None
except json.JSONDecodeError as e:
return None, f"Invalid JSON file: {str(e)}"
except pd.errors.EmptyDataError:
return None, "CSV file is empty"
except Exception as e:
return None, f"Error processing file: {str(e)}"
def clean_nan_values(record):
"""Convert NaN values to None for proper CSV serialization."""
import math
cleaned = {}
for key, value in record.items():
if pd.isna(value) or (isinstance(value, float) and math.isnan(value)):
cleaned[key] = None
else:
cleaned[key] = value
return cleaned
def aggregate_runs_to_csv():
"""
Aggregate all JSON files in runs/ directory into results.csv.
This consolidates all uploaded evaluation results into a single CSV file.
Deduplicates records based on (Model, Provider, Agent Framework) combination,
keeping the most recent entry for each unique combination.
Preserves existing records from results.csv that aren't in runs/ directory.
"""
runs_path = get_runs_path()
results_path = get_results_path()
# First, load existing results.csv to preserve models not in new uploads
existing_records_with_time = []
if results_path.exists():
try:
df_existing = load_df(results_path)
if len(df_existing) > 0:
# Convert existing records to dict format
for _, row in df_existing.iterrows():
record = row.to_dict()
# Clean NaN values
record = clean_nan_values(record)
# Use file modification time - 1 day as timestamp (older than new uploads)
# This ensures new uploads take precedence, but existing records are preserved
existing_mtime = results_path.stat().st_mtime - 86400 # 1 day ago
existing_records_with_time.append((existing_mtime, record))
except Exception as e:
print(f"Warning: Error loading existing results.csv: {e}")
# Gather all JSON files with their modification times
records_with_time = []
for path in runs_path.glob("*.json"):
try:
record = json.loads(path.read_text())
# Store modification time for deduplication (most recent wins)
mtime = path.stat().st_mtime
records_with_time.append((mtime, record))
except Exception as e:
print(f"Warning: Skipping invalid JSON file {path}: {e}")
# Combine existing records with new records from runs/
all_records_with_time = existing_records_with_time + records_with_time
if not all_records_with_time:
# Create empty CSV with headers
fixed_metadata = ["Model", "Provider", "Agent Framework", "Type"]
fixed_metrics = ["Overall Pass Rate", "Avg Duration (s)", "Avg Cost ($)"]
with results_path.open("w", newline="") as f:
w = csv.DictWriter(f, fieldnames=fixed_metadata + fixed_metrics)
w.writeheader()
return
# Sort by modification time (most recent first)
all_records_with_time.sort(key=lambda x: x[0], reverse=True)
# Handle legacy column names and infer Type
legacy_map = {"Notes": "Agent Framework", "Overall": "Overall Pass Rate"}
processed_records = []
for mtime, record in all_records_with_time:
for old_key, new_key in legacy_map.items():
if old_key in record and new_key not in record:
record[new_key] = record.pop(old_key)
# Infer Type if not present
if "Type" not in record:
record["Type"] = infer_type(record)
processed_records.append(record)
# Deduplicate: keep only the most recent record for each (Model, Provider, Agent Framework) combination
seen = {}
deduplicated_records = []
for record in processed_records:
# Create unique key from Model, Provider, and Agent Framework
model = str(record.get("Model", "")).strip()
provider = str(record.get("Provider", "")).strip()
agent_framework = str(record.get("Agent Framework", "")).strip()
unique_key = (model, provider, agent_framework)
# Only add if we haven't seen this combination before
# Since records are sorted by time (most recent first), the first occurrence is kept
if unique_key not in seen:
seen[unique_key] = True
deduplicated_records.append(record)
if not deduplicated_records:
# Create empty CSV with headers
fixed_metadata = ["Model", "Provider", "Agent Framework", "Type"]
fixed_metrics = ["Overall Pass Rate", "Avg Duration (s)", "Avg Cost ($)"]
with results_path.open("w", newline="") as f:
w = csv.DictWriter(f, fieldnames=fixed_metadata + fixed_metrics)
w.writeheader()
return
# Build header: metadata → metrics → puzzle types
fixed_metadata = ["Model", "Provider", "Agent Framework", "Type"]
fixed_metrics = ["Overall Pass Rate", "Avg Duration (s)", "Avg Cost ($)"]
puzzle_types = sorted({k for r in deduplicated_records for k in r.keys()
if k not in fixed_metadata + fixed_metrics})
header = fixed_metadata + fixed_metrics + puzzle_types
# Write CSV
results_path.parent.mkdir(parents=True, exist_ok=True)
with results_path.open("w", newline="") as f:
w = csv.DictWriter(f, fieldnames=header)
w.writeheader()
for r in deduplicated_records:
w.writerow(r)
def render(category, sort_column, sort_direction, model_filter="Models Avg"):
df_full = load_df() # Keep full dataset for perf_by_type
df = df_full.copy()
df = compute_score(df, category)
# Determine sort column and direction
ascending = (sort_direction == "Low→High")
# Map sort column names to actual column names (only numeric/metric columns)
sort_column_map = {
"Pass Rate": "Category Pass Rate",
"Avg Duration (s)": "Avg Duration (s)",
"Avg Cost ($)": "Avg Cost ($)"
}
actual_sort_column = sort_column_map.get(sort_column, "Category Pass Rate")
# Check if column exists
if actual_sort_column not in df.columns:
actual_sort_column = "Category Pass Rate"
# Handle NaN values for numeric sorting
df = df.copy()
df['_sort_helper'] = df[actual_sort_column].fillna(float('inf') if ascending else float('-inf'))
df = df.sort_values('_sort_helper', ascending=ascending).drop(columns=['_sort_helper'])
df = df.reset_index(drop=True)
# perf_by_type uses full dataset to show all puzzle types, with optional model filter
# cost_effectiveness_plot needs df with Category Pass Rate computed
return table_html(df), perf_bar(df), perf_by_type(df_full, model_filter), cost_effectiveness_plot(df)
def app():
df = load_df()
cats = ["Overall"]
if len(df) > 0:
# Get all puzzle type columns (exclude metadata and metric columns)
exclude_cols = ["Model", "Provider", "Agent Framework", "Type", "Overall Pass Rate", "Avg Duration (s)", "Avg Cost ($)"]
puzzle_cols = [c for c in df.columns if c not in exclude_cols]
cats = ["Overall"] + puzzle_cols
with gr.Blocks(title="CAPTCHAv2 Leaderboard", theme=gr.themes.Soft(primary_hue="indigo")) as demo:
gr.Markdown("""
<div style="text-align: center; padding: 30px 0;">
<h1 style="font-size: 42px; font-weight: 700; margin: 0; background: linear-gradient(135deg, #6366f1 0%, #8b5cf6 50%, #a855f7 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text;">
CAPTCHAv2 Leaderboard
</h1>
<p style="font-size: 16px; color: #64748b; margin-top: 10px;">
Compare model performance across different CAPTCHA types
</p>
</div>
""")
# Upload section
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("### 📤 Upload Results")
# Main accordion for the entire guide
with gr.Accordion("📖 Step-by-Step Guide to Submit Results", open=False):
# Step 1: Run Evaluation Protocol
with gr.Accordion("Step 1: Run the Evaluation Protocol", open=False):
gr.Markdown("""
**Option A: Using browser-use Agent Framework**
1. Start the CAPTCHA server:
```bash
python app.py
```
The server will run on `http://127.0.0.1:7860`
2. Run the browser-use agent evaluation (default is their in house model BU1.0):
```bash
python -m agent_frameworks.browseruse_cli \\
--url http://127.0.0.1:7860 \\
--llm browser-use \\
```
Or with a different LLM:
```bash
python -m agent_frameworks.browseruse_cli \\
--url http://127.0.0.1:7860 \\
--llm openai \\
--model gpt-4o
```
3. The evaluation will automatically save results to `benchmark_results.json` in the project root.
Each puzzle attempt is logged as a JSON object with fields:
- `puzzle_type`, `puzzle_id`, `user_answer`, `correct_answer`, `correct`
- `elapsed_time`, `timestamp`
- `model`, `provider`, `agent_framework`
**Option B: Using Other Agent Frameworks**
Follow your framework's evaluation protocol. Ensure results are saved in `benchmark_results.json` format
(JSONL: one JSON object per line) with the same field structure.
""")
# Step 2: Convert Results
with gr.Accordion("Step 2: Convert Results to CSV Format", open=False):
gr.Markdown("""
**Method 1: Convert to CSV Format (Recommended)**
Use the provided conversion script (`convert_benchmark_to_csv.py` in the project root):
```bash
python convert_benchmark_to_csv.py benchmark_results.json leaderboard/results.csv
```
**Method 2: Directly Upload to Leaderboard (Auto-conversion)**
You can upload `benchmark_results.json` directly here. The system will automatically handle all.
Optionally provide metadata below if auto-detection fails:
- Model Name (e.g., "gpt-4", "claude-3-sonnet", "bu-1-0")
- Provider (e.g., "OpenAI", "Anthropic", "browser-use")
- Agent Framework (e.g., "browser-use", "crewai")
""")
# Step 3: Upload Results
with gr.Accordion("Step 3: Upload Results", open=False):
gr.Markdown("""
**Supported file formats:**
- ✅ `benchmark_results.json` - Per-puzzle results (JSONL format)
- ✅ `results.csv` - Aggregated results **Recommended**
- ✅ JSON files - Single object or array of aggregated results
**File format requirements:**
For `benchmark_results.json` (per-puzzle format):
```json
{"puzzle_type": "Dice_Count", "puzzle_id": "dice1.png", "user_answer": "24", "correct_answer": 24, "correct": true, "elapsed_time": "12.5", "timestamp": "2025-01-01T00:00:00Z", "model": "bu-1-0", "provider": "browser-use", "agent_framework": "browser-use"}
```
For CSV (aggregated format):
- Required columns: `Model`, `Provider`, `Agent Framework`, `Type`, `Overall Pass Rate` , `Avg Duration (s)`, `Avg Cost ($)`, and puzzle type columns (e.g., `Dice_Count`, `Mirror`, etc.)
""")
file_upload = gr.File(
label="Upload Results File",
file_types=[".csv", ".json"],
type="filepath"
)
with gr.Row():
model_name_input = gr.Textbox(
label="Model Name (optional, for benchmark_results.json)",
placeholder="e.g., gpt-4, claude-3-sonnet",
container=True
)
provider_input = gr.Textbox(
label="Provider (optional, for benchmark_results.json)",
placeholder="e.g., OpenAI, Anthropic, Google",
container=True
)
agent_framework_input = gr.Textbox(
label="Agent Framework (optional, for benchmark_results.json)",
placeholder="e.g., browser-use, crewai",
value="browser-use",
container=True
)
upload_btn = gr.Button("Upload & Update Leaderboard", variant="primary")
upload_status = gr.Markdown("")
gr.Markdown("---")
with gr.Row():
cat = gr.Dropdown(choices=cats, value="Overall", label="Category/Type", container=True)
sort_col = gr.Dropdown(
choices=["Pass Rate", "Avg Duration (s)", "Avg Cost ($)"],
value="Pass Rate",
label="Sort by",
container=True
)
sort_dir = gr.Radio(
choices=["High→Low", "Low→High"],
value="High→Low",
label="Sort Direction",
container=True
)
# Model filter for Performance by Type plot
model_choices = ["Models Avg"]
if len(df) > 0 and "Model" in df.columns:
model_choices.extend(sorted(df["Model"].unique().tolist()))
with gr.Row():
model_filter = gr.Dropdown(
choices=model_choices,
value="Models Avg",
label="Model Filter (for Performance by Type plot)",
container=True
)
out = gr.HTML(elem_classes="leaderboard-table")
bar = gr.Plot(label="Performance Comparison")
pertype_plot = gr.Plot(label="Performance by Type")
cost_eff_plot = gr.Plot(label="Cost-Effectiveness Analysis")
def handle_upload(file, model_filter_val, model_name_input_val, provider_input_val, agent_framework_input_val):
if file is None:
# Return current state if no file
table, bar_fig, pertype_fig, cost_fig = render("Overall", "Pass Rate", "High→Low", model_filter_val or "Models Avg")
return "Please select a file to upload.", table, bar_fig, pertype_fig, cost_fig
# Use provided metadata or None (which will trigger auto-detection)
model_name_val = model_name_input_val.strip() if model_name_input_val else None
provider_val = provider_input_val.strip() if provider_input_val else None
agent_framework_val = agent_framework_input_val.strip() if agent_framework_input_val else None
success_msg, error_msg = process_uploaded_file(
file,
model_name=model_name_val,
provider=provider_val,
agent_framework=agent_framework_val
)
if error_msg:
# Return current state with error message
table, bar_fig, pertype_fig, cost_fig = render("Overall", "Pass Rate", "High→Low", model_filter_val or "Models Avg")
return f"❌ {error_msg}", table, bar_fig, pertype_fig, cost_fig
# Reload and render after successful upload
# Re-render with current settings (use Overall as default since we can't access component values directly)
table, bar_fig, pertype_fig, cost_fig = render("Overall", "Pass Rate", "High→Low", model_filter_val or "Models Avg")
return success_msg, table, bar_fig, pertype_fig, cost_fig
upload_btn.click(
handle_upload,
inputs=[file_upload, model_filter, model_name_input, provider_input, agent_framework_input],
outputs=[upload_status, out, bar, pertype_plot, cost_eff_plot]
)
demo.load(lambda: render("Overall", "Pass Rate", "High→Low", "Models Avg"), outputs=[out, bar, pertype_plot, cost_eff_plot])
for comp in (cat, sort_col, sort_dir, model_filter):
comp.change(render, inputs=[cat, sort_col, sort_dir, model_filter], outputs=[out, bar, pertype_plot, cost_eff_plot])
return demo
if __name__ == "__main__":
app().launch()
|