File size: 7,496 Bytes
a42ebba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import os
import torch
import gc
from ..utils import log

from accelerate import init_empty_weights
from accelerate.utils import set_module_tensor_to_device

import comfy.model_management as mm
from comfy.utils import load_torch_file
import folder_paths

script_directory = os.path.dirname(os.path.abspath(__file__))


class DownloadAndLoadWav2VecModel:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "model": (["facebook/wav2vec2-base-960h"],),

            "base_precision": (["fp32", "bf16", "fp16"], {"default": "fp16"}),
            "load_device": (["main_device", "offload_device"], {"default": "main_device", "tooltip": "Initial device to load the model to, NOT recommended with the larger models unless you have 48GB+ VRAM"}),
            },
        }

    RETURN_TYPES = ("WAV2VECMODEL",)
    RETURN_NAMES = ("wav2vec_model", )
    FUNCTION = "loadmodel"
    CATEGORY = "WanVideoWrapper"

    def loadmodel(self, model, base_precision, load_device):
        from transformers import Wav2Vec2Model, Wav2Vec2Processor
        
        base_dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "fp8_e4m3fn_fast": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp16_fast": torch.float16, "fp32": torch.float32}[base_precision]
        device = mm.get_torch_device()
        offload_device = mm.unet_offload_device()

        if load_device == "offload_device":
            transfomer_load_device = offload_device
        else:
            transfomer_load_device = device

        model_path = os.path.join(folder_paths.models_dir, "transformers", model)
        if not os.path.exists(model_path):
            log.info(f"Downloading Qwen model to: {model_path}")
            from huggingface_hub import snapshot_download
            snapshot_download(
                repo_id=model,
                ignore_patterns=["*.bin", "*.h5"],
                local_dir=model_path,
                local_dir_use_symlinks=False,
            )

        wav2vec_processor = Wav2Vec2Processor.from_pretrained(model_path)
        wav2vec = Wav2Vec2Model.from_pretrained(model_path).to(base_dtype).to(transfomer_load_device).eval()

        wav2vec_processor_model = {
            "processor": wav2vec_processor,
            "model": wav2vec,
            "dtype": base_dtype,}

        return (wav2vec_processor_model,)

class FantasyTalkingModelLoader:
    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "model": (folder_paths.get_filename_list("diffusion_models"), {"tooltip": "These models are loaded from the 'ComfyUI/models/diffusion_models' -folder",}),

            "base_precision": (["fp32", "bf16", "fp16"], {"default": "fp16"}),
            },
        }

    RETURN_TYPES = ("FANTASYTALKINGMODEL",)
    RETURN_NAMES = ("model", )
    FUNCTION = "loadmodel"
    CATEGORY = "WanVideoWrapper"

    def loadmodel(self, model, base_precision):
        from .model import FantasyTalkingAudioConditionModel

        device = mm.get_torch_device()
        offload_device = mm.unet_offload_device()
        base_dtype = {"fp8_e4m3fn": torch.float8_e4m3fn, "fp8_e4m3fn_fast": torch.float8_e4m3fn, "bf16": torch.bfloat16, "fp16": torch.float16, "fp16_fast": torch.float16, "fp32": torch.float32}[base_precision]
        
        model_path = folder_paths.get_full_path_or_raise("diffusion_models", model)
        sd = load_torch_file(model_path, device=offload_device, safe_load=True)

        with init_empty_weights():
            fantasytalking_proj_model = FantasyTalkingAudioConditionModel(audio_in_dim=768, audio_proj_dim=2048)
        #fantasytalking_proj_model.load_state_dict(sd, strict=False)

        for name, param in fantasytalking_proj_model.named_parameters():
            set_module_tensor_to_device(fantasytalking_proj_model, name, device=offload_device, dtype=base_dtype, value=sd[name])

        fantasytalking = {
            "proj_model": fantasytalking_proj_model,
            "sd": sd,
        }

        return (fantasytalking,)
    
class FantasyTalkingWav2VecEmbeds:
    @classmethod
    def INPUT_TYPES(s):
        return {"required": {
            "wav2vec_model": ("WAV2VECMODEL",),
            "fantasytalking_model": ("FANTASYTALKINGMODEL",),
            "audio": ("AUDIO",),
            "num_frames": ("INT", {"default": 81, "min": 1, "max": 1000, "step": 1}),
            "fps": ("FLOAT", {"default": 23.0, "min": 1.0, "max": 60.0, "step": 0.1}),
            "audio_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1, "tooltip": "Strength of the audio conditioning"}),
            "audio_cfg_scale": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 100.0, "step": 0.1, "tooltip": "When not 1.0, an extra model pass without audio conditioning is done: slower inference but more motion is allowed"}),
            },
        }

    RETURN_TYPES = ("FANTASYTALKING_EMBEDS", )
    RETURN_NAMES = ("fantasytalking_embeds",)
    FUNCTION = "process"
    CATEGORY = "WanVideoWrapper"

    def process(self, wav2vec_model, fantasytalking_model, fps, num_frames, audio_scale, audio_cfg_scale, audio):
        import torchaudio

        device = mm.get_torch_device()
        offload_device = mm.unet_offload_device()
        dtype = wav2vec_model["dtype"]
        wav2vec = wav2vec_model["model"]
        wav2vec_processor = wav2vec_model["processor"]
        audio_proj_model = fantasytalking_model["proj_model"]

        sr = 16000

        audio_input = audio["waveform"]
        sample_rate = audio["sample_rate"]
        if sample_rate != sr:
            audio_input = torchaudio.functional.resample(audio_input, sample_rate, sr)
        audio_input = audio_input[0][0]

        start_time = 0
        end_time = num_frames / fps

        start_sample = int(start_time * sr)
        end_sample = int(end_time * sr)

        try:
            audio_segment = audio_input[start_sample:end_sample]
        except:
            audio_segment = audio_input

        print("audio_segment.shape", audio_segment.shape)

        input_values = wav2vec_processor(
            audio_segment.numpy(), sampling_rate=sr, return_tensors="pt"
        ).input_values.to(dtype).to(device)

        audio_features = wav2vec(input_values).last_hidden_state

        audio_proj_model.proj_model.to(device)
        audio_proj_fea = audio_proj_model.get_proj_fea(audio_features)
        pos_idx_ranges = audio_proj_model.split_audio_sequence(
            audio_proj_fea.size(1), num_frames=num_frames
        )
        audio_proj_split, audio_context_lens = audio_proj_model.split_tensor_with_padding(
            audio_proj_fea, pos_idx_ranges, expand_length=4
        )  # [b,21,9+8,768]
        audio_proj_model.proj_model.to(offload_device)
        mm.soft_empty_cache()

        out = {
            "audio_proj": audio_proj_split,
            "audio_context_lens": audio_context_lens,
            "audio_scale": audio_scale,
            "audio_cfg_scale": audio_cfg_scale
            }
    
        return (out,)


NODE_CLASS_MAPPINGS = {
    "DownloadAndLoadWav2VecModel": DownloadAndLoadWav2VecModel,
    "FantasyTalkingModelLoader": FantasyTalkingModelLoader,
    "FantasyTalkingWav2VecEmbeds": FantasyTalkingWav2VecEmbeds,
    }
NODE_DISPLAY_NAME_MAPPINGS = {
    "DownloadAndLoadWav2VecModel": "(Down)load Wav2Vec Model",
    "FantasyTalkingModelLoader": "FantasyTalking Model Loader",
    "FantasyTalkingWav2VecEmbeds": "FantasyTalking Wav2Vec Embeds",
    }