Spaces:
Running
on
Zero
Running
on
Zero
| from torch import Tensor | |
| import torch | |
| import comfy.utils | |
| from .utils import BIGMIN, BIGMAX, select_indexes_from_str, convert_str_to_indexes, select_indexes | |
| class MergeStrategies: | |
| MATCH_A = "match A" | |
| MATCH_B = "match B" | |
| MATCH_SMALLER = "match smaller" | |
| MATCH_LARGER = "match larger" | |
| list_all = [MATCH_A, MATCH_B, MATCH_SMALLER, MATCH_LARGER] | |
| class ScaleMethods: | |
| NEAREST_EXACT = "nearest-exact" | |
| BILINEAR = "bilinear" | |
| AREA = "area" | |
| BICUBIC = "bicubic" | |
| BISLERP = "bislerp" | |
| list_all = [NEAREST_EXACT, BILINEAR, AREA, BICUBIC, BISLERP] | |
| class CropMethods: | |
| DISABLED = "disabled" | |
| CENTER = "center" | |
| list_all = [DISABLED, CENTER] | |
| class SplitLatents: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "latents": ("LATENT",), | |
| "split_index": ("INT", {"default": 0, "step": 1, "min": BIGMIN, "max": BIGMAX}), | |
| }, | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/latent" | |
| RETURN_TYPES = ("LATENT", "INT", "LATENT", "INT") | |
| RETURN_NAMES = ("LATENT_A", "A_count", "LATENT_B", "B_count") | |
| FUNCTION = "split_latents" | |
| def split_latents(self, latents: dict[str, Tensor], split_index: int): | |
| latents_len = len(latents["samples"]) | |
| group_a = latents.copy() | |
| group_b = latents.copy() | |
| for key, val in latents.items(): | |
| if type(val) == Tensor and len(val) == latents_len: | |
| group_a[key] = latents[key][:split_index] | |
| group_b[key] = latents[key][split_index:] | |
| return (group_a, group_a["samples"].size(0), group_b, group_b["samples"].size(0)) | |
| class SplitImages: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "images": ("IMAGE",), | |
| "split_index": ("INT", {"default": 0, "step": 1, "min": BIGMIN, "max": BIGMAX}), | |
| }, | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/image" | |
| RETURN_TYPES = ("IMAGE", "INT", "IMAGE", "INT") | |
| RETURN_NAMES = ("IMAGE_A", "A_count", "IMAGE_B", "B_count") | |
| FUNCTION = "split_images" | |
| def split_images(self, images: Tensor, split_index: int): | |
| group_a = images[:split_index] | |
| group_b = images[split_index:] | |
| return (group_a, group_a.size(0), group_b, group_b.size(0)) | |
| class SplitMasks: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "mask": ("MASK",), | |
| "split_index": ("INT", {"default": 0, "step": 1, "min": BIGMIN, "max": BIGMAX}), | |
| }, | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/mask" | |
| RETURN_TYPES = ("MASK", "INT", "MASK", "INT") | |
| RETURN_NAMES = ("MASK_A", "A_count", "MASK_B", "B_count") | |
| FUNCTION = "split_masks" | |
| def split_masks(self, mask: Tensor, split_index: int): | |
| group_a = mask[:split_index] | |
| group_b = mask[split_index:] | |
| return (group_a, group_a.size(0), group_b, group_b.size(0)) | |
| class MergeLatents: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "latents_A": ("LATENT",), | |
| "latents_B": ("LATENT",), | |
| "merge_strategy": (MergeStrategies.list_all,), | |
| "scale_method": (ScaleMethods.list_all,), | |
| "crop": (CropMethods.list_all,), | |
| } | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/latent" | |
| RETURN_TYPES = ("LATENT", "INT",) | |
| RETURN_NAMES = ("LATENT", "count",) | |
| FUNCTION = "merge" | |
| def merge(self, latents_A: dict, latents_B: dict, merge_strategy: str, scale_method: str, crop: str): | |
| latents = [] | |
| latents_A = latents_A.copy()["samples"] | |
| latents_B = latents_B.copy()["samples"] | |
| # TODO: handle other properties on latents besides just "samples" | |
| # if not same dimensions, do scaling | |
| if latents_A.shape[3] != latents_B.shape[3] or latents_A.shape[2] != latents_B.shape[2]: | |
| A_size = latents_A.shape[3] * latents_A.shape[2] | |
| B_size = latents_B.shape[3] * latents_B.shape[2] | |
| # determine which to use | |
| use_A_as_template = True | |
| if merge_strategy == MergeStrategies.MATCH_A: | |
| pass | |
| elif merge_strategy == MergeStrategies.MATCH_B: | |
| use_A_as_template = False | |
| elif merge_strategy in (MergeStrategies.MATCH_SMALLER, MergeStrategies.MATCH_LARGER): | |
| if A_size <= B_size: | |
| use_A_as_template = True if merge_strategy == MergeStrategies.MATCH_SMALLER else False | |
| # apply scaling | |
| if use_A_as_template: | |
| latents_B = comfy.utils.common_upscale(latents_B, latents_A.shape[3], latents_A.shape[2], scale_method, crop) | |
| else: | |
| latents_A = comfy.utils.common_upscale(latents_A, latents_B.shape[3], latents_B.shape[2], scale_method, crop) | |
| latents.append(latents_A) | |
| latents.append(latents_B) | |
| merged = {"samples": torch.cat(latents, dim=0)} | |
| return (merged, len(merged["samples"]),) | |
| class MergeImages: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "images_A": ("IMAGE",), | |
| "images_B": ("IMAGE",), | |
| "merge_strategy": (MergeStrategies.list_all,), | |
| "scale_method": (ScaleMethods.list_all,), | |
| "crop": (CropMethods.list_all,), | |
| } | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/image" | |
| RETURN_TYPES = ("IMAGE", "INT",) | |
| RETURN_NAMES = ("IMAGE", "count",) | |
| FUNCTION = "merge" | |
| def merge(self, images_A: Tensor, images_B: Tensor, merge_strategy: str, scale_method: str, crop: str): | |
| images = [] | |
| # if not same dimensions, do scaling | |
| if images_A.shape[3] != images_B.shape[3] or images_A.shape[2] != images_B.shape[2]: | |
| images_A = images_A.movedim(-1,1) | |
| images_B = images_B.movedim(-1,1) | |
| A_size = images_A.shape[3] * images_A.shape[2] | |
| B_size = images_B.shape[3] * images_B.shape[2] | |
| # determine which to use | |
| use_A_as_template = True | |
| if merge_strategy == MergeStrategies.MATCH_A: | |
| pass | |
| elif merge_strategy == MergeStrategies.MATCH_B: | |
| use_A_as_template = False | |
| elif merge_strategy in (MergeStrategies.MATCH_SMALLER, MergeStrategies.MATCH_LARGER): | |
| if A_size <= B_size: | |
| use_A_as_template = True if merge_strategy == MergeStrategies.MATCH_SMALLER else False | |
| # apply scaling | |
| if use_A_as_template: | |
| images_B = comfy.utils.common_upscale(images_B, images_A.shape[3], images_A.shape[2], scale_method, crop) | |
| else: | |
| images_A = comfy.utils.common_upscale(images_A, images_B.shape[3], images_B.shape[2], scale_method, crop) | |
| images_A = images_A.movedim(1,-1) | |
| images_B = images_B.movedim(1,-1) | |
| images.append(images_A) | |
| images.append(images_B) | |
| all_images = torch.cat(images, dim=0) | |
| return (all_images, all_images.size(0),) | |
| class MergeMasks: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "mask_A": ("MASK",), | |
| "mask_B": ("MASK",), | |
| "merge_strategy": (MergeStrategies.list_all,), | |
| "scale_method": (ScaleMethods.list_all,), | |
| "crop": (CropMethods.list_all,), | |
| } | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/mask" | |
| RETURN_TYPES = ("MASK", "INT",) | |
| RETURN_NAMES = ("MASK", "count",) | |
| FUNCTION = "merge" | |
| def merge(self, mask_A: Tensor, mask_B: Tensor, merge_strategy: str, scale_method: str, crop: str): | |
| masks = [] | |
| # if not same dimensions, do scaling | |
| if mask_A.shape[2] != mask_B.shape[2] or mask_A.shape[1] != mask_B.shape[1]: | |
| A_size = mask_A.shape[2] * mask_A.shape[1] | |
| B_size = mask_B.shape[2] * mask_B.shape[1] | |
| # determine which to use | |
| use_A_as_template = True | |
| if merge_strategy == MergeStrategies.MATCH_A: | |
| pass | |
| elif merge_strategy == MergeStrategies.MATCH_B: | |
| use_A_as_template = False | |
| elif merge_strategy in (MergeStrategies.MATCH_SMALLER, MergeStrategies.MATCH_LARGER): | |
| if A_size <= B_size: | |
| use_A_as_template = True if merge_strategy == MergeStrategies.MATCH_SMALLER else False | |
| # add dimension where image channels would be expected to work with common_upscale | |
| mask_A = torch.unsqueeze(mask_A, 1) | |
| mask_B = torch.unsqueeze(mask_B, 1) | |
| # apply scaling | |
| if use_A_as_template: | |
| mask_B = comfy.utils.common_upscale(mask_B, mask_A.shape[3], mask_A.shape[2], scale_method, crop) | |
| else: | |
| mask_A = comfy.utils.common_upscale(mask_A, mask_B.shape[3], mask_B.shape[2], scale_method, crop) | |
| # undo dimension increase | |
| mask_A = torch.squeeze(mask_A, 1) | |
| mask_B = torch.squeeze(mask_B, 1) | |
| masks.append(mask_A) | |
| masks.append(mask_B) | |
| all_masks = torch.cat(masks, dim=0) | |
| return (all_masks, all_masks.size(0),) | |
| class SelectEveryNthLatent: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "latents": ("LATENT",), | |
| "select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}), | |
| "skip_first_latents": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}), | |
| }, | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/latent" | |
| RETURN_TYPES = ("LATENT", "INT",) | |
| RETURN_NAMES = ("LATENT", "count",) | |
| FUNCTION = "select_latents" | |
| def select_latents(self, latents: dict[str, Tensor], select_every_nth: int, skip_first_latents: int): | |
| latents = latents.copy() | |
| latents_len = len(latents["samples"]) | |
| for key, val in latents.items(): | |
| if type(val) == Tensor and len(val) == latents_len: | |
| latents[key] = val[skip_first_latents::select_every_nth] | |
| return (latents, latents["samples"].size(0)) | |
| class SelectEveryNthImage: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "images": ("IMAGE",), | |
| "select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}), | |
| "skip_first_images": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}), | |
| }, | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/image" | |
| RETURN_TYPES = ("IMAGE", "INT",) | |
| RETURN_NAMES = ("IMAGE", "count",) | |
| FUNCTION = "select_images" | |
| def select_images(self, images: Tensor, select_every_nth: int, skip_first_images: int): | |
| sub_images = images[skip_first_images::select_every_nth] | |
| return (sub_images, sub_images.size(0)) | |
| class SelectEveryNthMask: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "mask": ("MASK",), | |
| "select_every_nth": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}), | |
| "skip_first_masks": ("INT", {"default": 0, "min": 0, "max": BIGMAX, "step": 1}), | |
| }, | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/mask" | |
| RETURN_TYPES = ("MASK", "INT",) | |
| RETURN_NAMES = ("MASK", "count",) | |
| FUNCTION = "select_masks" | |
| def select_masks(self, mask: Tensor, select_every_nth: int, skip_first_masks: int): | |
| sub_mask = mask[skip_first_masks::select_every_nth] | |
| return (sub_mask, sub_mask.size(0)) | |
| class GetLatentCount: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "latents": ("LATENT",), | |
| } | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/latent" | |
| RETURN_TYPES = ("INT",) | |
| RETURN_NAMES = ("count",) | |
| FUNCTION = "count_input" | |
| def count_input(self, latents: dict): | |
| return (latents["samples"].size(0),) | |
| class GetImageCount: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "images": ("IMAGE",), | |
| } | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/image" | |
| RETURN_TYPES = ("INT",) | |
| RETURN_NAMES = ("count",) | |
| FUNCTION = "count_input" | |
| def count_input(self, images: Tensor): | |
| return (images.size(0),) | |
| class GetMaskCount: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "mask": ("MASK",), | |
| } | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/mask" | |
| RETURN_TYPES = ("INT",) | |
| RETURN_NAMES = ("count",) | |
| FUNCTION = "count_input" | |
| def count_input(self, mask: Tensor): | |
| return (mask.size(0),) | |
| class RepeatLatents: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "latents": ("LATENT",), | |
| "multiply_by": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}) | |
| } | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/latent" | |
| RETURN_TYPES = ("LATENT", "INT",) | |
| RETURN_NAMES = ("LATENT", "count",) | |
| FUNCTION = "duplicate_input" | |
| def duplicate_input(self, latents: dict[str, Tensor], multiply_by: int): | |
| latents = latents.copy() | |
| latents_len = len(latents["samples"]) | |
| for key, val in latents.items(): | |
| if type(val) == Tensor and len(val) == latents_len: | |
| full_latents = [] | |
| for _ in range(0, multiply_by): | |
| full_latents.append(latents[key]) | |
| latents[key] = torch.cat(full_latents, dim=0) | |
| return (latents, latents["samples"].size(0),) | |
| class RepeatImages: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "images": ("IMAGE",), | |
| "multiply_by": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}) | |
| } | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/image" | |
| RETURN_TYPES = ("IMAGE", "INT",) | |
| RETURN_NAMES = ("IMAGE", "count",) | |
| FUNCTION = "duplicate_input" | |
| def duplicate_input(self, images: Tensor, multiply_by: int): | |
| full_images = [] | |
| for n in range(0, multiply_by): | |
| full_images.append(images) | |
| new_images = torch.cat(full_images, dim=0) | |
| return (new_images, new_images.size(0),) | |
| class RepeatMasks: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "mask": ("MASK",), | |
| "multiply_by": ("INT", {"default": 1, "min": 1, "max": BIGMAX, "step": 1}) | |
| } | |
| } | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/mask" | |
| RETURN_TYPES = ("MASK", "INT",) | |
| RETURN_NAMES = ("MASK", "count",) | |
| FUNCTION = "duplicate_input" | |
| def duplicate_input(self, mask: Tensor, multiply_by: int): | |
| full_masks = [] | |
| for n in range(0, multiply_by): | |
| full_masks.append(mask) | |
| new_mask = torch.cat(full_masks, dim=0) | |
| return (new_mask, new_mask.size(0),) | |
| select_description = """Use comma-separated indexes to select items in the given order. | |
| Supports negative indexes, python-style ranges (end index excluded), | |
| as well as range step. | |
| Acceptable entries (assuming 16 items provided, so idxs 0 to 15 exist): | |
| 0 -> Returns [0] | |
| -1 -> Returns [15] | |
| 0, 1, 13 -> Returns [0, 1, 13] | |
| 0:5, 13 -> Returns [0, 1, 2, 3, 4, 13] | |
| 0:-1 -> Returns [0, 1, 2, ..., 13, 14] | |
| 0:5:-1 -> Returns [4, 3, 2, 1, 0] | |
| 0:5:2 -> Returns [0, 2, 4] | |
| ::-1 -> Returns [15, 14, 13, ..., 2, 1, 0] | |
| """ | |
| class SelectLatents: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "latent": ("LATENT",), | |
| "indexes": ("STRING", {"default": "0"}), | |
| "err_if_missing": ("BOOLEAN", {"default": True}), | |
| "err_if_empty": ("BOOLEAN", {"default": True}), | |
| }, | |
| } | |
| DESCRIPTION = select_description | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/latent" | |
| RETURN_TYPES = ("LATENT",) | |
| FUNCTION = "select" | |
| def select(self, latent: dict[str, Tensor], indexes: str, err_if_missing: bool, err_if_empty: bool): | |
| # latents are a dict and may contain different stuff (like noise_mask), so need to account for it all | |
| latent = latent.copy() | |
| latents_len = len(latent["samples"]) | |
| real_idxs = convert_str_to_indexes(indexes, latents_len, allow_missing=not err_if_missing) | |
| if err_if_empty and len(real_idxs) == 0: | |
| raise Exception(f"Nothing was selected based on indexes found in '{indexes}'.") | |
| for key, val in latent.items(): | |
| if type(val) == Tensor and len(val) == latents_len: | |
| latent[key] = select_indexes(val, real_idxs) | |
| return (latent,) | |
| class SelectImages: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "image": ("IMAGE",), | |
| "indexes": ("STRING", {"default": "0"}), | |
| "err_if_missing": ("BOOLEAN", {"default": True}), | |
| "err_if_empty": ("BOOLEAN", {"default": True}), | |
| }, | |
| } | |
| DESCRIPTION = select_description | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/image" | |
| RETURN_TYPES = ("IMAGE",) | |
| FUNCTION = "select" | |
| def select(self, image: Tensor, indexes: str, err_if_missing: bool, err_if_empty: bool): | |
| to_return = select_indexes_from_str(input_obj=image, indexes=indexes, | |
| err_if_missing=err_if_missing, err_if_empty=err_if_empty) | |
| to_return_type = type(to_return) | |
| return (to_return,) | |
| class SelectMasks: | |
| def INPUT_TYPES(s): | |
| return { | |
| "required": { | |
| "mask": ("MASK",), | |
| "indexes": ("STRING", {"default": "0"}), | |
| "err_if_missing": ("BOOLEAN", {"default": True}), | |
| "err_if_empty": ("BOOLEAN", {"default": True}), | |
| }, | |
| } | |
| DESCRIPTION = select_description | |
| CATEGORY = "Video Helper Suite π₯π ₯π π ’/mask" | |
| RETURN_TYPES = ("MASK",) | |
| FUNCTION = "select" | |
| def select(self, mask: Tensor, indexes: str, err_if_missing: bool, err_if_empty: bool): | |
| return (select_indexes_from_str(input_obj=mask, indexes=indexes, | |
| err_if_missing=err_if_missing, err_if_empty=err_if_empty),) | |