QingyanBai's picture
Upload 750 files
a42ebba verified
import json
from .motion import process_tracks
import numpy as np
from typing import List, Tuple
import torch
FIXED_LENGTH = 121
def pad_pts(tr):
"""Convert list of {x,y} to (FIXED_LENGTH,1,3) array, padding/truncating."""
pts = np.array([[p['x'], p['y'], 1] for p in tr], dtype=np.float32)
n = pts.shape[0]
if n < FIXED_LENGTH:
pad = np.zeros((FIXED_LENGTH - n, 3), dtype=np.float32)
pts = np.vstack((pts, pad))
else:
pts = pts[:FIXED_LENGTH]
return pts.reshape(FIXED_LENGTH, 1, 3)
def age_to_bgr(ratio: float) -> Tuple[int,int,int]:
"""
Map ratio∈[0,1] through: 0→blue, 1/3→green, 2/3→yellow, 1→red.
Returns (B,G,R) for OpenCV.
"""
if ratio <= 1/3:
# blue→green
t = ratio / (1/3)
b = int(255 * (1 - t))
g = int(255 * t)
r = 0
elif ratio <= 2/3:
# green→yellow
t = (ratio - 1/3) / (1/3)
b = 0
g = 255
r = int(255 * t)
else:
# yellow→red
t = (ratio - 2/3) / (1/3)
b = 0
g = int(255 * (1 - t))
r = 255
return (r, g, b)
def paint_point_track(
frames: np.ndarray,
point_tracks: np.ndarray,
visibles: np.ndarray,
min_radius: int = 1,
max_radius: int = 6,
max_retain: int = 50
) -> np.ndarray:
"""
Draws every past point of each track on each frame, with radius and color
interpolated by the point's age (old→small to new→large).
Args:
frames: [F, H, W, 3] uint8 RGB
point_tracks:[N, F, 2] float32 – (x,y) in pixel coords
visibles: [N, F] bool – visibility mask
min_radius: radius for the very first point (oldest)
max_radius: radius for the current point (newest)
Returns:
video: [F, H, W, 3] uint8 RGB
"""
import cv2
num_points, num_frames = point_tracks.shape[:2]
H, W = frames.shape[1:3]
video = frames.copy()
for t in range(num_frames):
# start from the original frame
frame = video[t].copy()
for i in range(num_points):
# draw every past step τ = 0..t
for τ in range(t + 1):
if not visibles[i, τ]:
continue
if t - τ > max_retain:
continue
# sub-pixel offset + clamp
x, y = point_tracks[i, τ] + 0.5
xi = int(np.clip(x, 0, W - 1))
yi = int(np.clip(y, 0, H - 1))
# age‐ratio in [0,1]
if num_frames > 1:
ratio = 1 - float(t - τ) / max_retain
else:
ratio = 1.0
# interpolated radius
radius = int(round(min_radius + (max_radius - min_radius) * ratio))
# OpenCV draws in BGR order:
color_rgb = age_to_bgr(ratio)
# filled circle
cv2.circle(frame, (xi, yi), radius, color_rgb, thickness=-1)
video[t] = frame
return video
def parse_json_tracks(tracks):
tracks_data = []
try:
# If tracks is a string, try to parse it as JSON
if isinstance(tracks, str):
parsed = json.loads(tracks.replace("'", '"'))
tracks_data.extend(parsed)
else:
# If tracks is a list of strings, parse each one
for track_str in tracks:
parsed = json.loads(track_str.replace("'", '"'))
tracks_data.append(parsed)
# Check if we have a single track (dict with x,y) or a list of tracks
if tracks_data and isinstance(tracks_data[0], dict) and 'x' in tracks_data[0]:
# Single track detected, wrap it in a list
tracks_data = [tracks_data]
elif tracks_data and isinstance(tracks_data[0], list) and tracks_data[0] and isinstance(tracks_data[0][0], dict) and 'x' in tracks_data[0][0]:
# Already a list of tracks, nothing to do
pass
else:
# Unexpected format
print(f"Warning: Unexpected track format: {type(tracks_data[0])}")
except json.JSONDecodeError as e:
print(f"Error parsing tracks JSON: {e}")
tracks_data = []
return tracks_data
class WanVideoATITracks:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("WANVIDEOMODEL", ),
"tracks": ("STRING",),
"width": ("INT", {"default": 832, "min": 64, "max": 2048, "step": 8, "tooltip": "Width of the image to encode"}),
"height": ("INT", {"default": 480, "min": 64, "max": 29048, "step": 8, "tooltip": "Height of the image to encode"}),
"temperature": ("FLOAT", {"default": 220.0, "min": 0.0, "max": 1000.0, "step": 0.1}),
"topk": ("INT", {"default": 2, "min": 1, "max": 10, "step": 1}),
"start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Start percent of the steps to apply ATI"}),
"end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "End percent of the steps to apply ATI"}),
},
}
RETURN_TYPES = ("WANVIDEOMODEL",)
RETURN_NAMES = ("model",)
FUNCTION = "patchmodel"
CATEGORY = "WanVideoWrapper"
def patchmodel(self, model, tracks, width, height, temperature, topk, start_percent, end_percent):
tracks_data = parse_json_tracks(tracks)
arrs = []
for track in tracks_data:
pts = pad_pts(track)
arrs.append(pts)
tracks_np = np.stack(arrs, axis=0)
processed_tracks = process_tracks(tracks_np, (width, height))
patcher = model.clone()
patcher.model_options["transformer_options"]["ati_tracks"] = processed_tracks.unsqueeze(0)
patcher.model_options["transformer_options"]["ati_temperature"] = temperature
patcher.model_options["transformer_options"]["ati_topk"] = topk
patcher.model_options["transformer_options"]["ati_start_percent"] = start_percent
patcher.model_options["transformer_options"]["ati_end_percent"] = end_percent
return (patcher,)
class WanVideoATITracksVisualize:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"images": ("IMAGE",),
"tracks": ("STRING",),
"min_radius": ("INT", {"default": 1, "min": 0, "max": 100, "step": 1, "tooltip": "radius for the very first point (oldest)"}),
"max_radius": ("INT", {"default": 6, "min": 0, "max": 100, "step": 1, "tooltip": "radius for the current point (newest)"}),
"max_retain": ("INT", {"default": 50, "min": 0, "max": 100, "step": 1, "tooltip": "Maximum number of points to retain"}),
},
}
RETURN_TYPES = ("IMAGE",)
RETURN_NAMES = ("images",)
FUNCTION = "patchmodel"
CATEGORY = "WanVideoWrapper"
def patchmodel(self, images, tracks, min_radius, max_radius, max_retain):
tracks_data = parse_json_tracks(tracks)
arrs = []
for track in tracks_data:
pts = pad_pts(track)
arrs.append(pts)
tracks_np = np.stack(arrs, axis=0)
track = np.repeat(tracks_np, 2, axis=1)[:, ::3]
points = track[:, :, 0, :2].astype(np.float32)
visibles = track[:, :, 0, 2].astype(np.float32)
if images.shape[0] < points.shape[1]:
repeat_count = (points.shape[1] + images.shape[0] - 1) // images.shape[0]
images = images.repeat(repeat_count, 1, 1, 1)
images = images[:points.shape[1]]
elif images.shape[0] > points.shape[1]:
images = images[:points.shape[1]]
video_viz = paint_point_track(images.cpu().numpy(), points, visibles, min_radius, max_radius, max_retain)
video_viz = torch.from_numpy(video_viz).float()
return (video_viz,)
from comfy import utils
import types
from .motion_patch import patch_motion
class WanConcatCondPatch:
def __init__(self, tracks, temperature, topk):
self.tracks = tracks
self.temperature = temperature
self.topk = topk
def __get__(self, obj, objtype=None):
# Create bound method with stored parameters
def wrapped_concat_cond(self_module, *args, **kwargs):
return modified_concat_cond(self_module, self.tracks, self.temperature, self.topk, *args, **kwargs)
return types.MethodType(wrapped_concat_cond, obj)
def modified_concat_cond(self, tracks, temperature, topk, **kwargs):
noise = kwargs.get("noise", None)
extra_channels = self.diffusion_model.patch_embedding.weight.shape[1] - noise.shape[1]
if extra_channels == 0:
return None
image = kwargs.get("concat_latent_image", None)
device = kwargs["device"]
if image is None:
shape_image = list(noise.shape)
shape_image[1] = extra_channels
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
for i in range(0, image.shape[1], 16):
image[:, i: i + 16] = self.process_latent_in(image[:, i: i + 16])
image = utils.resize_to_batch_size(image, noise.shape[0])
if not self.image_to_video or extra_channels == image.shape[1]:
return image
if image.shape[1] > (extra_channels - 4):
image = image[:, :(extra_channels - 4)]
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None:
mask = torch.zeros_like(noise)[:, :4]
else:
if mask.shape[1] != 4:
mask = torch.mean(mask, dim=1, keepdim=True)
mask = 1.0 - mask
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
if mask.shape[-3] < noise.shape[-3]:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
if mask.shape[1] == 1:
mask = mask.repeat(1, 4, 1, 1, 1)
mask = utils.resize_to_batch_size(mask, noise.shape[0])
image_cond = torch.cat((mask, image), dim=1)
image_cond_ati = patch_motion(tracks.to(image_cond.device, image_cond.dtype), image_cond[0],
temperature=temperature, topk=topk)
return image_cond_ati.unsqueeze(0)
class WanVideoATI_comfy:
@classmethod
def INPUT_TYPES(s):
return {"required": {
"model": ("MODEL", ),
"width": ("INT", {"default": 832, "min": 64, "max": 2048, "step": 8, "tooltip": "Width of the image to encode"}),
"height": ("INT", {"default": 480, "min": 64, "max": 29048, "step": 8, "tooltip": "Height of the image to encode"}),
"tracks": ("STRING",),
"temperature": ("FLOAT", {"default": 220.0, "min": 0.0, "max": 1000.0, "step": 0.1}),
"topk": ("INT", {"default": 2, "min": 1, "max": 10, "step": 1}),
},
}
RETURN_TYPES = ("MODEL",)
RETURN_NAMES = ("model", )
FUNCTION = "patchcond"
CATEGORY = "WanVideoWrapper"
def patchcond(self, model, tracks, width, height, temperature, topk):
tracks_data = parse_json_tracks(tracks)
arrs = []
for track in tracks_data:
pts = pad_pts(track)
arrs.append(pts)
tracks_np = np.stack(arrs, axis=0)
processed_tracks = process_tracks(tracks_np, (width, height))
model_clone = model.clone()
model_clone.add_object_patch(
"concat_cond",
WanConcatCondPatch(
processed_tracks.unsqueeze(0), temperature, topk
).__get__(model.model, model.model.__class__)
)
return (model_clone,)
NODE_CLASS_MAPPINGS = {
"WanVideoATITracks": WanVideoATITracks,
"WanVideoATITracksVisualize": WanVideoATITracksVisualize,
"WanVideoATI_comfy": WanVideoATI_comfy,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"WanVideoATITracks": "WanVideo ATI Tracks",
"WanVideoATITracksVisualize": "WanVideo ATI Tracks Visualize",
"WanVideoATI_comfy": "WanVideo ATI Comfy",
}