Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from PIL import Image | |
| from comfy.cli_args import args, LatentPreviewMethod | |
| from comfy.taesd.taesd import TAESD | |
| import comfy.model_management | |
| import folder_paths | |
| import comfy.utils | |
| import logging | |
| import os | |
| from .taehv import TAEHV | |
| MAX_PREVIEW_RESOLUTION = args.preview_size | |
| def preview_to_image(latent_image): | |
| print("latent_image shape: ", latent_image.shape)#torch.Size([60, 104, 3]) | |
| latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1 | |
| .mul(0xFF) # to 0..255 | |
| ) | |
| if comfy.model_management.directml_enabled: | |
| latents_ubyte = latents_ubyte.to(dtype=torch.uint8) | |
| latents_ubyte = latents_ubyte.to(device="cpu", dtype=torch.uint8, non_blocking=comfy.model_management.device_supports_non_blocking(latent_image.device)) | |
| return Image.fromarray(latents_ubyte.numpy()) | |
| class LatentPreviewer: | |
| def decode_latent_to_preview(self, x0): | |
| pass | |
| def decode_latent_to_preview_image(self, preview_format, x0): | |
| preview_image = self.decode_latent_to_preview(x0) | |
| return ("JPEG", preview_image, MAX_PREVIEW_RESOLUTION) | |
| class TAESDPreviewerImpl(LatentPreviewer): | |
| def __init__(self, taesd): | |
| self.taesd = taesd | |
| # def decode_latent_to_preview(self, x0): | |
| # #x_sample = self.taesd.decode(x0[:1])[0].movedim(0, 2) | |
| # print("x0 shape: ", x0.shape) #torch.Size([5, 16, 60, 104]) | |
| # x0 = x0.unsqueeze(0) | |
| # print("x0 shape: ", x0.shape) #torch.Size([5, 16, 60, 104]) | |
| # x_sample = self.taesd.decode_video(x0, parallel=False)[0].permute(0, 2, 3, 1)[0] | |
| # print("x_sample shape: ", x_sample.shape) | |
| # return preview_to_image(x_sample) | |
| class Latent2RGBPreviewer(LatentPreviewer): | |
| def __init__(self, latent_rgb_factors, latent_rgb_factors_bias=None): | |
| self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu").transpose(0, 1) | |
| self.latent_rgb_factors_bias = None | |
| if latent_rgb_factors_bias is not None: | |
| self.latent_rgb_factors_bias = torch.tensor(latent_rgb_factors_bias, device="cpu") | |
| def decode_latent_to_preview(self, x0): | |
| self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device) | |
| if self.latent_rgb_factors_bias is not None: | |
| self.latent_rgb_factors_bias = self.latent_rgb_factors_bias.to(dtype=x0.dtype, device=x0.device) | |
| if x0.ndim == 5: | |
| x0 = x0[0, :, 0] | |
| else: | |
| x0 = x0[0] | |
| latent_image = torch.nn.functional.linear(x0.movedim(0, -1), self.latent_rgb_factors, bias=self.latent_rgb_factors_bias) | |
| # latent_image = x0[0].permute(1, 2, 0) @ self.latent_rgb_factors | |
| return preview_to_image(latent_image) | |
| def get_previewer(device, latent_format): | |
| previewer = None | |
| method = args.preview_method | |
| if method != LatentPreviewMethod.NoPreviews: | |
| # TODO previewer methods | |
| if method == LatentPreviewMethod.Auto: | |
| method = LatentPreviewMethod.Latent2RGB | |
| if method == LatentPreviewMethod.TAESD: | |
| taehv_path = os.path.join(folder_paths.models_dir, "vae_approx", "taew2_1.safetensors") | |
| if not os.path.exists(taehv_path): | |
| raise RuntimeError(f"Could not find {taehv_path}") | |
| taew_sd = comfy.utils.load_torch_file(taehv_path) | |
| taesd = TAEHV(taew_sd).to(device) | |
| previewer = TAESDPreviewerImpl(taesd) | |
| previewer = WrappedPreviewer(previewer, rate=16) | |
| if previewer is None: | |
| if latent_format.latent_rgb_factors is not None: | |
| previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors, latent_format.latent_rgb_factors_bias) | |
| previewer = WrappedPreviewer(previewer, rate=4) | |
| return previewer | |
| def prepare_callback(model, steps, x0_output_dict=None): | |
| preview_format = "JPEG" | |
| if preview_format not in ["JPEG", "PNG"]: | |
| preview_format = "JPEG" | |
| previewer = get_previewer(model.load_device, model.model.latent_format) | |
| print("previewer: ", previewer) | |
| pbar = comfy.utils.ProgressBar(steps) | |
| def callback(step, x0, x, total_steps): | |
| if x0_output_dict is not None: | |
| x0_output_dict["x0"] = x0 | |
| preview_bytes = None | |
| if previewer: | |
| preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0) | |
| pbar.update_absolute(step + 1, total_steps, preview_bytes) | |
| return callback | |
| #borrowed VideoHelperSuite https://github.com/Kosinkadink/ComfyUI-VideoHelperSuite/blob/main/videohelpersuite/latent_preview.py | |
| import server | |
| from threading import Thread | |
| import torch.nn.functional as F | |
| import io | |
| import time | |
| import struct | |
| from importlib.util import find_spec | |
| serv = server.PromptServer.instance | |
| class WrappedPreviewer(LatentPreviewer): | |
| def __init__(self, previewer, rate=16): | |
| self.first_preview = True | |
| self.last_time = 0 | |
| self.c_index = 0 | |
| self.rate = rate | |
| self.swarmui_env = find_spec("SwarmComfyCommon") is not None | |
| if self.swarmui_env: | |
| print("previewer: SwarmUI output enabled") | |
| if hasattr(previewer, 'taesd'): | |
| self.taesd = previewer.taesd | |
| elif hasattr(previewer, 'latent_rgb_factors'): | |
| self.latent_rgb_factors = previewer.latent_rgb_factors | |
| self.latent_rgb_factors_bias = previewer.latent_rgb_factors_bias | |
| else: | |
| raise Exception('Unsupported preview type for VHS animated previews') | |
| def decode_latent_to_preview_image(self, preview_format, x0): | |
| if x0.ndim == 5: | |
| #Keep batch major | |
| x0 = x0.movedim(2,1) | |
| x0 = x0.reshape((-1,)+x0.shape[-3:]) | |
| num_images = x0.size(0) | |
| new_time = time.time() | |
| num_previews = int((new_time - self.last_time) * self.rate) | |
| self.last_time = self.last_time + num_previews/self.rate | |
| if num_previews > num_images: | |
| num_previews = num_images | |
| elif num_previews <= 0: | |
| return None | |
| if self.first_preview: | |
| self.first_preview = False | |
| serv.send_sync('VHS_latentpreview', {'length':num_images, 'rate': self.rate}) | |
| self.last_time = new_time + 1/self.rate | |
| if self.c_index + num_previews > num_images: | |
| x0 = x0.roll(-self.c_index, 0)[:num_previews] | |
| else: | |
| x0 = x0[self.c_index:self.c_index + num_previews] | |
| Thread(target=self.process_previews, args=(x0, self.c_index, | |
| num_images)).run() | |
| self.c_index = (self.c_index + num_previews) % num_images | |
| return None | |
| def process_previews(self, image_tensor, ind, leng): | |
| max_size = 256 | |
| image_tensor = self.decode_latent_to_preview(image_tensor) | |
| if image_tensor.size(1) > max_size or image_tensor.size(2) > max_size: | |
| image_tensor = image_tensor.movedim(-1,0) | |
| if image_tensor.size(2) < image_tensor.size(3): | |
| height = (max_size * image_tensor.size(2)) // image_tensor.size(3) | |
| image_tensor = F.interpolate(image_tensor, (height,max_size), mode='bilinear') | |
| else: | |
| width = (max_size * image_tensor.size(3)) // image_tensor.size(2) | |
| image_tensor = F.interpolate(image_tensor, (max_size, width), mode='bilinear') | |
| image_tensor = image_tensor.movedim(0,-1) | |
| previews_ubyte = (image_tensor.clamp(0, 1) | |
| .mul(0xFF) # to 0..255 | |
| ).to(device="cpu", dtype=torch.uint8) | |
| # Send VHS preview | |
| for preview in previews_ubyte: | |
| i = Image.fromarray(preview.numpy()) | |
| message = io.BytesIO() | |
| message.write((1).to_bytes(length=4, byteorder='big')*2) | |
| message.write(ind.to_bytes(length=4, byteorder='big')) | |
| i.save(message, format="JPEG", quality=95, compress_level=1) | |
| #NOTE: send sync already uses call_soon_threadsafe | |
| serv.send_sync(server.BinaryEventTypes.PREVIEW_IMAGE, | |
| message.getvalue(), serv.client_id) | |
| if self.rate == 16: | |
| ind = (ind + 1) % ((leng-1) * 4 - 1) | |
| else: | |
| ind = (ind + 1) % leng | |
| # Send SwarmUI preview if detected | |
| if self.swarmui_env: | |
| images = [Image.fromarray(preview.numpy()) for preview in previews_ubyte] | |
| message = io.BytesIO() | |
| header = struct.pack(">I", 3) | |
| message.write(header) | |
| images[0].save( | |
| message, | |
| save_all=True, | |
| duration=int(1000.0/self.rate), | |
| append_images=images[1 : len(images)], | |
| lossless=False, | |
| quality=80, | |
| method=0, | |
| format="WEBP", | |
| ) | |
| message.seek(0) | |
| preview_bytes = message.getvalue() | |
| serv.send_sync(1, preview_bytes, sid=serv.client_id) | |
| def decode_latent_to_preview(self, x0): | |
| if hasattr(self, 'taesd'): | |
| x0 = x0.unsqueeze(0) | |
| x_sample = self.taesd.decode_video(x0, parallel=False, show_progress_bar=False)[0].permute(0, 2, 3, 1) | |
| return x_sample | |
| else: | |
| self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device) | |
| if self.latent_rgb_factors_bias is not None: | |
| self.latent_rgb_factors_bias = self.latent_rgb_factors_bias.to(dtype=x0.dtype, device=x0.device) | |
| latent_image = F.linear(x0.movedim(1, -1), self.latent_rgb_factors, | |
| bias=self.latent_rgb_factors_bias) | |
| latent_image = (latent_image + 1.0) / 2.0 | |
| return latent_image | |