QingyanBai's picture
Upload 750 files
a42ebba verified
import torch
from PIL import Image
from comfy.cli_args import args, LatentPreviewMethod
from comfy.taesd.taesd import TAESD
import comfy.model_management
import folder_paths
import comfy.utils
import logging
import os
from .taehv import TAEHV
MAX_PREVIEW_RESOLUTION = args.preview_size
def preview_to_image(latent_image):
print("latent_image shape: ", latent_image.shape)#torch.Size([60, 104, 3])
latents_ubyte = (((latent_image + 1.0) / 2.0).clamp(0, 1) # change scale from -1..1 to 0..1
.mul(0xFF) # to 0..255
)
if comfy.model_management.directml_enabled:
latents_ubyte = latents_ubyte.to(dtype=torch.uint8)
latents_ubyte = latents_ubyte.to(device="cpu", dtype=torch.uint8, non_blocking=comfy.model_management.device_supports_non_blocking(latent_image.device))
return Image.fromarray(latents_ubyte.numpy())
class LatentPreviewer:
def decode_latent_to_preview(self, x0):
pass
def decode_latent_to_preview_image(self, preview_format, x0):
preview_image = self.decode_latent_to_preview(x0)
return ("JPEG", preview_image, MAX_PREVIEW_RESOLUTION)
class TAESDPreviewerImpl(LatentPreviewer):
def __init__(self, taesd):
self.taesd = taesd
# def decode_latent_to_preview(self, x0):
# #x_sample = self.taesd.decode(x0[:1])[0].movedim(0, 2)
# print("x0 shape: ", x0.shape) #torch.Size([5, 16, 60, 104])
# x0 = x0.unsqueeze(0)
# print("x0 shape: ", x0.shape) #torch.Size([5, 16, 60, 104])
# x_sample = self.taesd.decode_video(x0, parallel=False)[0].permute(0, 2, 3, 1)[0]
# print("x_sample shape: ", x_sample.shape)
# return preview_to_image(x_sample)
class Latent2RGBPreviewer(LatentPreviewer):
def __init__(self, latent_rgb_factors, latent_rgb_factors_bias=None):
self.latent_rgb_factors = torch.tensor(latent_rgb_factors, device="cpu").transpose(0, 1)
self.latent_rgb_factors_bias = None
if latent_rgb_factors_bias is not None:
self.latent_rgb_factors_bias = torch.tensor(latent_rgb_factors_bias, device="cpu")
def decode_latent_to_preview(self, x0):
self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device)
if self.latent_rgb_factors_bias is not None:
self.latent_rgb_factors_bias = self.latent_rgb_factors_bias.to(dtype=x0.dtype, device=x0.device)
if x0.ndim == 5:
x0 = x0[0, :, 0]
else:
x0 = x0[0]
latent_image = torch.nn.functional.linear(x0.movedim(0, -1), self.latent_rgb_factors, bias=self.latent_rgb_factors_bias)
# latent_image = x0[0].permute(1, 2, 0) @ self.latent_rgb_factors
return preview_to_image(latent_image)
def get_previewer(device, latent_format):
previewer = None
method = args.preview_method
if method != LatentPreviewMethod.NoPreviews:
# TODO previewer methods
if method == LatentPreviewMethod.Auto:
method = LatentPreviewMethod.Latent2RGB
if method == LatentPreviewMethod.TAESD:
taehv_path = os.path.join(folder_paths.models_dir, "vae_approx", "taew2_1.safetensors")
if not os.path.exists(taehv_path):
raise RuntimeError(f"Could not find {taehv_path}")
taew_sd = comfy.utils.load_torch_file(taehv_path)
taesd = TAEHV(taew_sd).to(device)
previewer = TAESDPreviewerImpl(taesd)
previewer = WrappedPreviewer(previewer, rate=16)
if previewer is None:
if latent_format.latent_rgb_factors is not None:
previewer = Latent2RGBPreviewer(latent_format.latent_rgb_factors, latent_format.latent_rgb_factors_bias)
previewer = WrappedPreviewer(previewer, rate=4)
return previewer
def prepare_callback(model, steps, x0_output_dict=None):
preview_format = "JPEG"
if preview_format not in ["JPEG", "PNG"]:
preview_format = "JPEG"
previewer = get_previewer(model.load_device, model.model.latent_format)
print("previewer: ", previewer)
pbar = comfy.utils.ProgressBar(steps)
def callback(step, x0, x, total_steps):
if x0_output_dict is not None:
x0_output_dict["x0"] = x0
preview_bytes = None
if previewer:
preview_bytes = previewer.decode_latent_to_preview_image(preview_format, x0)
pbar.update_absolute(step + 1, total_steps, preview_bytes)
return callback
#borrowed VideoHelperSuite https://github.com/Kosinkadink/ComfyUI-VideoHelperSuite/blob/main/videohelpersuite/latent_preview.py
import server
from threading import Thread
import torch.nn.functional as F
import io
import time
import struct
from importlib.util import find_spec
serv = server.PromptServer.instance
class WrappedPreviewer(LatentPreviewer):
def __init__(self, previewer, rate=16):
self.first_preview = True
self.last_time = 0
self.c_index = 0
self.rate = rate
self.swarmui_env = find_spec("SwarmComfyCommon") is not None
if self.swarmui_env:
print("previewer: SwarmUI output enabled")
if hasattr(previewer, 'taesd'):
self.taesd = previewer.taesd
elif hasattr(previewer, 'latent_rgb_factors'):
self.latent_rgb_factors = previewer.latent_rgb_factors
self.latent_rgb_factors_bias = previewer.latent_rgb_factors_bias
else:
raise Exception('Unsupported preview type for VHS animated previews')
def decode_latent_to_preview_image(self, preview_format, x0):
if x0.ndim == 5:
#Keep batch major
x0 = x0.movedim(2,1)
x0 = x0.reshape((-1,)+x0.shape[-3:])
num_images = x0.size(0)
new_time = time.time()
num_previews = int((new_time - self.last_time) * self.rate)
self.last_time = self.last_time + num_previews/self.rate
if num_previews > num_images:
num_previews = num_images
elif num_previews <= 0:
return None
if self.first_preview:
self.first_preview = False
serv.send_sync('VHS_latentpreview', {'length':num_images, 'rate': self.rate})
self.last_time = new_time + 1/self.rate
if self.c_index + num_previews > num_images:
x0 = x0.roll(-self.c_index, 0)[:num_previews]
else:
x0 = x0[self.c_index:self.c_index + num_previews]
Thread(target=self.process_previews, args=(x0, self.c_index,
num_images)).run()
self.c_index = (self.c_index + num_previews) % num_images
return None
def process_previews(self, image_tensor, ind, leng):
max_size = 256
image_tensor = self.decode_latent_to_preview(image_tensor)
if image_tensor.size(1) > max_size or image_tensor.size(2) > max_size:
image_tensor = image_tensor.movedim(-1,0)
if image_tensor.size(2) < image_tensor.size(3):
height = (max_size * image_tensor.size(2)) // image_tensor.size(3)
image_tensor = F.interpolate(image_tensor, (height,max_size), mode='bilinear')
else:
width = (max_size * image_tensor.size(3)) // image_tensor.size(2)
image_tensor = F.interpolate(image_tensor, (max_size, width), mode='bilinear')
image_tensor = image_tensor.movedim(0,-1)
previews_ubyte = (image_tensor.clamp(0, 1)
.mul(0xFF) # to 0..255
).to(device="cpu", dtype=torch.uint8)
# Send VHS preview
for preview in previews_ubyte:
i = Image.fromarray(preview.numpy())
message = io.BytesIO()
message.write((1).to_bytes(length=4, byteorder='big')*2)
message.write(ind.to_bytes(length=4, byteorder='big'))
i.save(message, format="JPEG", quality=95, compress_level=1)
#NOTE: send sync already uses call_soon_threadsafe
serv.send_sync(server.BinaryEventTypes.PREVIEW_IMAGE,
message.getvalue(), serv.client_id)
if self.rate == 16:
ind = (ind + 1) % ((leng-1) * 4 - 1)
else:
ind = (ind + 1) % leng
# Send SwarmUI preview if detected
if self.swarmui_env:
images = [Image.fromarray(preview.numpy()) for preview in previews_ubyte]
message = io.BytesIO()
header = struct.pack(">I", 3)
message.write(header)
images[0].save(
message,
save_all=True,
duration=int(1000.0/self.rate),
append_images=images[1 : len(images)],
lossless=False,
quality=80,
method=0,
format="WEBP",
)
message.seek(0)
preview_bytes = message.getvalue()
serv.send_sync(1, preview_bytes, sid=serv.client_id)
def decode_latent_to_preview(self, x0):
if hasattr(self, 'taesd'):
x0 = x0.unsqueeze(0)
x_sample = self.taesd.decode_video(x0, parallel=False, show_progress_bar=False)[0].permute(0, 2, 3, 1)
return x_sample
else:
self.latent_rgb_factors = self.latent_rgb_factors.to(dtype=x0.dtype, device=x0.device)
if self.latent_rgb_factors_bias is not None:
self.latent_rgb_factors_bias = self.latent_rgb_factors_bias.to(dtype=x0.dtype, device=x0.device)
latent_image = F.linear(x0.movedim(1, -1), self.latent_rgb_factors,
bias=self.latent_rgb_factors_bias)
latent_image = (latent_image + 1.0) / 2.0
return latent_image