import numpy as np import os import torch from einops import rearrange script_directory = os.path.dirname(os.path.abspath(__file__)) class Camera(object): """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py """ def __init__(self, entry): fx, fy, cx, cy = entry[1:5] self.fx = fx self.fy = fy self.cx = cx self.cy = cy w2c_mat = np.array(entry[7:]).reshape(3, 4) w2c_mat_4x4 = np.eye(4) w2c_mat_4x4[:3, :] = w2c_mat self.w2c_mat = w2c_mat_4x4 self.c2w_mat = np.linalg.inv(w2c_mat_4x4) def custom_meshgrid(*args): """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py """ # ref: https://pytorch.org/docs/stable/generated/torch.meshgrid.html?highlight=meshgrid#torch.meshgrid return torch.meshgrid(*args) def get_relative_pose(cam_params): """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py """ abs_w2cs = [cam_param.w2c_mat for cam_param in cam_params] abs_c2ws = [cam_param.c2w_mat for cam_param in cam_params] cam_to_origin = 0 target_cam_c2w = np.array([ [1, 0, 0, 0], [0, 1, 0, -cam_to_origin], [0, 0, 1, 0], [0, 0, 0, 1] ]) abs2rel = target_cam_c2w @ abs_w2cs[0] ret_poses = [target_cam_c2w, ] + [abs2rel @ abs_c2w for abs_c2w in abs_c2ws[1:]] ret_poses = np.array(ret_poses, dtype=np.float32) return ret_poses def ray_condition(K, c2w, H, W, device): """Copied from https://github.com/hehao13/CameraCtrl/blob/main/inference.py """ # c2w: B, V, 4, 4 # K: B, V, 4 B = K.shape[0] j, i = custom_meshgrid( torch.linspace(0, H - 1, H, device=device, dtype=c2w.dtype), torch.linspace(0, W - 1, W, device=device, dtype=c2w.dtype), ) i = i.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW] j = j.reshape([1, 1, H * W]).expand([B, 1, H * W]) + 0.5 # [B, HxW] fx, fy, cx, cy = K.chunk(4, dim=-1) # B,V, 1 zs = torch.ones_like(i) # [B, HxW] xs = (i - cx) / fx * zs ys = (j - cy) / fy * zs zs = zs.expand_as(ys) directions = torch.stack((xs, ys, zs), dim=-1) # B, V, HW, 3 directions = directions / directions.norm(dim=-1, keepdim=True) # B, V, HW, 3 rays_d = directions @ c2w[..., :3, :3].transpose(-1, -2) # B, V, 3, HW rays_o = c2w[..., :3, 3] # B, V, 3 rays_o = rays_o[:, :, None].expand_as(rays_d) # B, V, 3, HW # c2w @ dirctions rays_dxo = torch.cross(rays_o, rays_d) plucker = torch.cat([rays_dxo, rays_d], dim=-1) plucker = plucker.reshape(B, c2w.shape[1], H, W, 6) # B, V, H, W, 6 # plucker = plucker.permute(0, 1, 4, 2, 3) return plucker def process_poses(poses, width=672, height=384, original_pose_width=1280, original_pose_height=720, device='cpu', return_poses=False): """Modified from https://github.com/hehao13/CameraCtrl/blob/main/inference.py """ cam_params = [[float(x) for x in pose] for pose in poses] if return_poses: return cam_params else: cam_params = [Camera(cam_param) for cam_param in cam_params] sample_wh_ratio = width / height pose_wh_ratio = original_pose_width / original_pose_height # Assuming placeholder ratios, change as needed if pose_wh_ratio > sample_wh_ratio: resized_ori_w = height * pose_wh_ratio for cam_param in cam_params: cam_param.fx = resized_ori_w * cam_param.fx / width else: resized_ori_h = width / pose_wh_ratio for cam_param in cam_params: cam_param.fy = resized_ori_h * cam_param.fy / height intrinsic = np.asarray([[cam_param.fx * width, cam_param.fy * height, cam_param.cx * width, cam_param.cy * height] for cam_param in cam_params], dtype=np.float32) K = torch.as_tensor(intrinsic)[None] # [1, 1, 4] c2ws = get_relative_pose(cam_params) # Assuming this function is defined elsewhere c2ws = torch.as_tensor(c2ws)[None] # [1, n_frame, 4, 4] plucker_embedding = ray_condition(K, c2ws, height, width, device=device)[0].permute(0, 3, 1, 2).contiguous() # V, 6, H, W plucker_embedding = plucker_embedding[None] plucker_embedding = rearrange(plucker_embedding, "b f c h w -> b f h w c")[0] return plucker_embedding class WanVideoFunCameraEmbeds: @classmethod def INPUT_TYPES(s): return {"required": { "poses": ("CAMERACTRL_POSES", ), "width": ("INT", {"default": 832, "min": 64, "max": 2048, "step": 8, "tooltip": "Width of the image to encode"}), "height": ("INT", {"default": 480, "min": 64, "max": 29048, "step": 8, "tooltip": "Height of the image to encode"}), "strength": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Strength of the camera motion"}), "start_percent": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "Start percent of the steps to apply camera motion"}), "end_percent": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 1.0, "step": 0.01, "tooltip": "End percent of the steps to apply camera motion"}), }, # "optional": { # "fun_ref_image": ("LATENT", {"tooltip": "Reference latent for the Fun 1.1 -model"}), # } } RETURN_TYPES = ("WANVIDIMAGE_EMBEDS",) RETURN_NAMES = ("image_embeds",) FUNCTION = "process" CATEGORY = "WanVideoWrapper" def process(self, poses, width, height, strength, start_percent, end_percent, fun_ref_image=None): num_frames = len(poses) control_camera_video = process_poses(poses, width, height) control_camera_video = control_camera_video.permute([3, 0, 1, 2]).unsqueeze(0) print("control_camera_video.shape", control_camera_video.shape) # Rearrange dimensions # Concatenate and transpose dimensions control_camera_latents = torch.concat( [ torch.repeat_interleave(control_camera_video[:, :, 0:1], repeats=4, dim=2), control_camera_video[:, :, 1:] ], dim=2 ).transpose(1, 2) # Reshape, transpose, and view into desired shape b, f, c, h, w = control_camera_latents.shape control_camera_latents = control_camera_latents.contiguous().view(b, f // 4, 4, c, h, w).transpose(2, 3) control_camera_latents = control_camera_latents.contiguous().view(b, f // 4, c * 4, h, w).transpose(1, 2) print("control_camera_latents.shape", control_camera_latents.shape) vae_stride = (4, 8, 8) target_shape = (16, (num_frames - 1) // vae_stride[0] + 1, height // vae_stride[1], width // vae_stride[2]) embeds = { "target_shape": target_shape, "num_frames": num_frames, "control_embeds": { "control_camera_latents": control_camera_latents * strength, "control_camera_start_percent": start_percent, "control_camera_end_percent": end_percent, "fun_ref_image": fun_ref_image["samples"][:,:, 0] if fun_ref_image is not None else None, } } return (embeds,) NODE_CLASS_MAPPINGS = { "WanVideoFunCameraEmbeds": WanVideoFunCameraEmbeds, } NODE_DISPLAY_NAME_MAPPINGS = { "WanVideoFunCameraEmbeds": "WanVideo FunCamera Embeds", }