Spaces:
Runtime error
Runtime error
File size: 9,695 Bytes
871e0f2 5b3f5b9 8b74da9 871e0f2 5b3f5b9 871e0f2 5b3f5b9 871e0f2 8b74da9 43550eb 805abfd 43550eb 5b3f5b9 43550eb 5b3f5b9 545569a 43550eb 5b3f5b9 43550eb 5b3f5b9 43550eb 5b3f5b9 43550eb 5b3f5b9 43550eb 5b3f5b9 43550eb 5b3f5b9 43550eb 5b3f5b9 43550eb 5b3f5b9 43550eb c6c48c5 43550eb c6c48c5 43550eb c6c48c5 43550eb c6c48c5 43550eb 5b3f5b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 |
import os
import contextlib
from collections import defaultdict
from typing import Dict, List
import numpy as np
import pandas as pd
import requests
import torch
import gradio as gr
from ahocorapy.keywordtree import KeywordTree
from sentence_transformers import SentenceTransformer
from FlagEmbedding import FlagModel
from transformers import AutoTokenizer, AutoModel
import torch.nn.functional as F
CSV_PATH = os.environ.get("CORPUS_CSV", "H_and_M_FINAL.csv") # pre‑indexed corpus
TEXT_COL = os.environ.get("TEXT_COLUMN", "text") # column with passage text
IMAGE_COL = os.environ.get("IMAGE_URL_COLUMN", "image_url") # optional image column
TOP_K = int(os.environ.get("TOP_K", 5))
MAX_TOKENS = int(os.environ.get("MAX_TOKENS", 512)) # truncate long docs
BATCH_SIZE = int(os.environ.get("BATCH_SIZE", 8))
MODEL_REPO_MAP = {
"intfloat/e5-small-v2": "intfloat/e5-small-v2",
"BAAI/bge-small-en-v1.5": "BAAI/bge-small-en-v1.5",
}
@contextlib.contextmanager
def inference_mode():
with torch.inference_mode():
yield
def truncate(text: str, max_tokens: int = MAX_TOKENS) -> str:
"""Very rough truncation by characters (≈ tokens/4)."""
approx_chars = max_tokens * 4 # over‑estimate
return text[:approx_chars]
# class EmbeddingBackend:
# """Wraps different HF / FlagEmbedding models behind a common API."""
# def __init__(self, repo: str):
# self.repo = repo
# if repo == "BAAI/bge-small-en-v1.5":
# # FlagEmbedding back‑end (BGE)
# self.model = FlagModel(
# repo,
# query_instruction_for_retrieval="Generate a representation for this sentence to retrieve related articles:",
# use_fp16=True,
# )
# self.encode_docs = self.model.encode
# self.encode_query = lambda q: self.model.encode_queries([q])[0]
# else:
# # SentenceTransformer back‑ends
# self.model = SentenceTransformer(repo, trust_remote_code=True)
# if "Qwen3" in repo:
# self.encode_query = lambda q: self.model.encode(q, prompt_name="query")
# elif "stella" in repo:
# self.encode_query = lambda q: self.model.encode(q, prompt_name="s2p_query")
# else:
# self.encode_query = lambda q: self.model.encode(q)
# self.encode_docs = lambda docs: self.model.encode(docs)
# # Convenience wrappers that return *numpy* arrays
# def encode_corpus(self, passages: List[str]) -> np.ndarray:
# emb = self.encode_docs(passages)
# return np.asarray(emb)
# def encode_question(self, question: str) -> np.ndarray:
# emb = self.encode_query(question)
# return np.asarray(emb)
class EmbeddingBackend:
"""Adapter that presents .encode_query / .encode_docs for all models."""
def __init__(self, repo: str):
self.repo = repo
# ---------- BGE (FlagEmbedding) ----------
if repo == "BAAI/bge-small-en-v1.5":
self.model = FlagModel(
repo,
query_instruction_for_retrieval="Generate a representation for this sentence to retrieve related articles::",
use_fp16=True,
)
self.encode_docs = lambda docs: self.model.encode(docs, batch_size=BATCH_SIZE)
self.encode_query = lambda q: self.model.encode_queries([q])[0]
return
# ---------- E5 ----------
if repo == "intfloat/e5-base-v2":
self.tokenizer = AutoTokenizer.from_pretrained(repo)
self.model = AutoModel.from_pretrained(repo)
def _embed(texts: List[str]):
batch_dict = self.tokenizer(texts, max_length=512, padding=True, truncation=True, return_tensors="pt")
with inference_mode():
outputs = self.model(**batch_dict)
hidden = outputs.last_hidden_state.masked_fill(~batch_dict["attention_mask"].bool().unsqueeze(-1), 0.0)
emb = hidden.sum(1) / batch_dict["attention_mask"].sum(1, keepdims=True)
return F.normalize(emb, p=2, dim=1).cpu().numpy()
self.encode_docs = lambda docs: _embed([f"passage: {d}" for d in docs])
self.encode_query = lambda q: _embed([f"query: {q}"])[0]
return
# ---------- Qwen 0.6B (SentenceTransformer) ----------
model_kwargs = {}
if "Qwen3" in repo and not os.getenv("QWEN_USE_FLASH"):
model_kwargs["attn_implementation"] = "eager"
self.model = SentenceTransformer(repo, trust_remote_code=True, model_kwargs=model_kwargs)
self.encode_query = lambda q: self.model.encode(q, prompt_name="query")
self.encode_docs = lambda docs: self.model.encode(docs, batch_size=BATCH_SIZE, normalize_embeddings=False)
# ---------- Public wrappers ----------
def encode_corpus(self, passages: List[str]) -> np.ndarray:
return self.encode_docs(passages)
def encode_question(self, question: str) -> np.ndarray:
return self.encode_query(question)
# --------------------------------------------------
# Hybrid (exact → semantic) index
# --------------------------------------------------
class HybridIndex:
def __init__(self, df: pd.DataFrame, text_col: str, backend: EmbeddingBackend):
self.df = df
self.text_col = text_col
self.backend = backend
self.text_to_rows = defaultdict(list) # passage → [row ids]
self.ac_tree = self._build_ac()
self.embeddings = self._build_emb()
# ---------- exact match ----------
def _build_ac(self):
tree = KeywordTree(case_insensitive=True)
for i, passage in self.df[self.text_col].astype(str).items():
tree.add(passage)
self.text_to_rows[passage].append(i)
tree.finalize()
return tree
def exact_hits(self, query: str) -> List[int]:
rows = set()
for keyword, _ in self.ac_tree.search_all(query):
rows.update(self.text_to_rows[keyword])
return list(rows)
# ---------- semantic ----------
def _build_emb(self):
docs = self.df[self.text_col].astype(str).tolist()
emb = self.backend.encode_corpus(docs)
emb_norm = emb / np.linalg.norm(emb, axis=1, keepdims=True)
return emb_norm.astype(np.float32)
def semantic_hits(self, query: str, k: int = TOP_K) -> List[int]:
q = self.backend.encode_question(query)
q = q / np.linalg.norm(q)
scores = self.embeddings @ q # cosine similarities
return np.argsort(-scores)[:k].tolist()
# --------------------------------------------------
# Build indices at start‑up
# --------------------------------------------------
def load_corpus(path: str) -> pd.DataFrame:
if not os.path.exists(path):
raise FileNotFoundError(f"Corpus CSV not found: {path}")
df = pd.read_csv(path)
if TEXT_COL not in df.columns:
raise ValueError(f"'{TEXT_COL}' column missing in {path}")
return df
def build_indices(df: pd.DataFrame) -> Dict[str, HybridIndex]:
indices: Dict[str, HybridIndex] = {}
for repo in MODEL_REPO_MAP.values():
print(f"→ Building index for {repo}…", flush=True)
backend = EmbeddingBackend(repo)
indices[repo] = HybridIndex(df, TEXT_COL, backend)
return indices
print("Loading corpus & initialising indices… (first run may take several minutes)")
CORPUS_DF = load_corpus(CSV_PATH)
INDICES = build_indices(CORPUS_DF)
print("✅ All indices ready.")
# --------------------------------------------------
# Search handler
# --------------------------------------------------
def search(query: str, model_repo: str):
if not query:
raise gr.Error("Please enter a query.")
if model_repo not in INDICES:
raise gr.Error("Selected model is not indexed.")
idx = INDICES[model_repo]
rows = idx.exact_hits(query)
if not rows:
rows = idx.semantic_hits(query)
subset_cols = [TEXT_COL]
if IMAGE_COL and IMAGE_COL in CORPUS_DF.columns:
subset_cols.append(IMAGE_COL)
result_df = CORPUS_DF.iloc[rows][subset_cols]
# -------- image gallery --------
gallery = []
if IMAGE_COL and IMAGE_COL in result_df.columns:
for url in result_df[IMAGE_COL].dropna():
try:
requests.head(url, timeout=2)
gallery.append(url)
except requests.RequestException:
continue
return result_df, gallery
# --------------------------------------------------
# Gradio UI
# --------------------------------------------------
with gr.Blocks(title="Hybrid RAG Search") as demo:
gr.Markdown(
"""
# Hybrid Retrieval‑Augmented Search
The dataset is pre‑indexed for **Qwen3‑0.6B**, **bge‑small‑en‑v1.5**, and **Stella‑1.5B‑v5**.
* **Exact substring** match via Aho‑Corasick first.
* **Semantic** top‑5 retrieval if no exact hit is found.
"""
)
with gr.Row():
model_sel = gr.Dropdown(
choices=list(MODEL_REPO_MAP.keys()),
label="Embedding Model",
value="BAAI/bge-small-en-v1.5",
)
query_box = gr.Textbox(label="Ask a question…", lines=2)
search_btn = gr.Button("Search", variant="primary")
results = gr.Dataframe(interactive=False)
gallery = gr.Gallery(label="Images", columns=4, height="auto")
search_btn.click(search, inputs=[query_box, model_sel], outputs=[results, gallery])
if __name__ == "__main__":
demo.launch()
|