Spaces:
Sleeping
Sleeping
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
|
@@ -17,16 +17,27 @@ import uvicorn
|
|
| 17 |
|
| 18 |
# HuggingFace Inference Client
|
| 19 |
HF_TOKEN = os.getenv("HF_TOKEN", "")
|
| 20 |
-
inference_client = InferenceClient(
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
# Cloudflare Configuration
|
| 23 |
CLOUDFLARE_CONFIG = {
|
| 24 |
"api_token": os.getenv("CLOUDFLARE_API_TOKEN", ""),
|
| 25 |
-
"account_id": os.getenv(
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
"r2_bucket_name": os.getenv("CLOUDFLARE_R2_BUCKET_NAME", "openmanus-storage"),
|
| 28 |
-
"kv_namespace_id": os.getenv(
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
"durable_objects_sessions": "AGENT_SESSIONS",
|
| 31 |
"durable_objects_chatrooms": "CHAT_ROOMS",
|
| 32 |
}
|
|
@@ -95,12 +106,14 @@ app.add_middleware(
|
|
| 95 |
allow_headers=["*"],
|
| 96 |
)
|
| 97 |
|
|
|
|
| 98 |
# Database initialization
|
| 99 |
def init_database():
|
| 100 |
"""Initialize SQLite database for user authentication"""
|
| 101 |
conn = sqlite3.connect("openmanus.db")
|
| 102 |
cursor = conn.cursor()
|
| 103 |
-
cursor.execute(
|
|
|
|
| 104 |
CREATE TABLE IF NOT EXISTS users (
|
| 105 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 106 |
mobile TEXT UNIQUE NOT NULL,
|
|
@@ -108,44 +121,54 @@ def init_database():
|
|
| 108 |
password_hash TEXT NOT NULL,
|
| 109 |
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 110 |
)
|
| 111 |
-
"""
|
|
|
|
| 112 |
conn.commit()
|
| 113 |
conn.close()
|
| 114 |
|
|
|
|
| 115 |
init_database()
|
| 116 |
|
|
|
|
| 117 |
# Pydantic Models
|
| 118 |
class SignupRequest(BaseModel):
|
| 119 |
mobile: str
|
| 120 |
name: str
|
| 121 |
password: str
|
| 122 |
|
|
|
|
| 123 |
class LoginRequest(BaseModel):
|
| 124 |
mobile: str
|
| 125 |
password: str
|
| 126 |
|
|
|
|
| 127 |
class AIRequest(BaseModel):
|
| 128 |
model: str
|
| 129 |
prompt: str
|
| 130 |
max_tokens: Optional[int] = 2000
|
| 131 |
temperature: Optional[float] = 0.7
|
| 132 |
|
|
|
|
| 133 |
class ChatRequest(BaseModel):
|
| 134 |
message: str
|
| 135 |
model: Optional[str] = "Qwen/Qwen2.5-72B-Instruct"
|
| 136 |
history: Optional[List[Dict[str, str]]] = []
|
| 137 |
|
|
|
|
| 138 |
# Helper Functions
|
| 139 |
def hash_password(password: str) -> str:
|
| 140 |
"""Hash password using SHA-256"""
|
| 141 |
return hashlib.sha256(password.encode()).hexdigest()
|
| 142 |
|
|
|
|
| 143 |
def verify_password(password: str, password_hash: str) -> bool:
|
| 144 |
"""Verify password against hash"""
|
| 145 |
return hash_password(password) == password_hash
|
| 146 |
|
|
|
|
| 147 |
# API Endpoints
|
| 148 |
|
|
|
|
| 149 |
@app.get("/")
|
| 150 |
async def root():
|
| 151 |
"""Root endpoint"""
|
|
@@ -159,9 +182,10 @@ async def root():
|
|
| 159 |
"auth": "/auth/signup, /auth/login",
|
| 160 |
"ai": "/ai/chat, /ai/generate",
|
| 161 |
"models": "/models/list",
|
| 162 |
-
}
|
| 163 |
}
|
| 164 |
|
|
|
|
| 165 |
@app.get("/health")
|
| 166 |
async def health_check():
|
| 167 |
"""Health check endpoint"""
|
|
@@ -174,100 +198,103 @@ async def health_check():
|
|
| 174 |
"cloudflare_configured": bool(CLOUDFLARE_CONFIG["api_token"]),
|
| 175 |
}
|
| 176 |
|
|
|
|
| 177 |
@app.post("/auth/signup")
|
| 178 |
async def signup(request: SignupRequest):
|
| 179 |
"""User registration endpoint"""
|
| 180 |
try:
|
| 181 |
if len(request.password) < 6:
|
| 182 |
-
raise HTTPException(
|
| 183 |
-
|
|
|
|
|
|
|
| 184 |
conn = sqlite3.connect("openmanus.db")
|
| 185 |
cursor = conn.cursor()
|
| 186 |
-
|
| 187 |
# Check if user exists
|
| 188 |
cursor.execute("SELECT mobile FROM users WHERE mobile = ?", (request.mobile,))
|
| 189 |
if cursor.fetchone():
|
| 190 |
conn.close()
|
| 191 |
-
raise HTTPException(
|
| 192 |
-
|
|
|
|
|
|
|
| 193 |
# Insert new user
|
| 194 |
password_hash = hash_password(request.password)
|
| 195 |
cursor.execute(
|
| 196 |
"INSERT INTO users (mobile, name, password_hash) VALUES (?, ?, ?)",
|
| 197 |
-
(request.mobile, request.name, password_hash)
|
| 198 |
)
|
| 199 |
conn.commit()
|
| 200 |
conn.close()
|
| 201 |
-
|
| 202 |
return {
|
| 203 |
"success": True,
|
| 204 |
"message": "Account created successfully",
|
| 205 |
"mobile": request.mobile,
|
| 206 |
-
"name": request.name
|
| 207 |
}
|
| 208 |
-
|
| 209 |
except HTTPException:
|
| 210 |
raise
|
| 211 |
except Exception as e:
|
| 212 |
raise HTTPException(status_code=500, detail=f"Registration failed: {str(e)}")
|
| 213 |
|
|
|
|
| 214 |
@app.post("/auth/login")
|
| 215 |
async def login(request: LoginRequest):
|
| 216 |
"""User login endpoint"""
|
| 217 |
try:
|
| 218 |
conn = sqlite3.connect("openmanus.db")
|
| 219 |
cursor = conn.cursor()
|
| 220 |
-
|
| 221 |
cursor.execute(
|
| 222 |
-
"SELECT name, password_hash FROM users WHERE mobile = ?",
|
| 223 |
-
(request.mobile,)
|
| 224 |
)
|
| 225 |
result = cursor.fetchone()
|
| 226 |
conn.close()
|
| 227 |
-
|
| 228 |
if not result:
|
| 229 |
-
raise HTTPException(
|
| 230 |
-
|
|
|
|
|
|
|
| 231 |
name, password_hash = result
|
| 232 |
-
|
| 233 |
if not verify_password(request.password, password_hash):
|
| 234 |
-
raise HTTPException(
|
| 235 |
-
|
|
|
|
|
|
|
| 236 |
return {
|
| 237 |
"success": True,
|
| 238 |
"message": "Login successful",
|
| 239 |
-
"user": {
|
| 240 |
-
|
| 241 |
-
"name": name
|
| 242 |
-
},
|
| 243 |
-
"token": f"session_{hash_password(request.mobile + str(datetime.now()))[:32]}"
|
| 244 |
}
|
| 245 |
-
|
| 246 |
except HTTPException:
|
| 247 |
raise
|
| 248 |
except Exception as e:
|
| 249 |
raise HTTPException(status_code=500, detail=f"Login failed: {str(e)}")
|
| 250 |
|
|
|
|
| 251 |
@app.post("/ai/chat")
|
| 252 |
async def ai_chat(request: ChatRequest):
|
| 253 |
"""AI chat endpoint - main endpoint for AI interactions"""
|
| 254 |
try:
|
| 255 |
# Prepare messages for chat completion
|
| 256 |
messages = []
|
| 257 |
-
|
| 258 |
# Add history
|
| 259 |
for msg in request.history:
|
| 260 |
-
messages.append(
|
| 261 |
-
"role": msg.get("role", "user"),
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
# Add current message
|
| 266 |
-
messages.append({
|
| 267 |
-
|
| 268 |
-
"content": request.message
|
| 269 |
-
})
|
| 270 |
-
|
| 271 |
# Call HuggingFace Inference API
|
| 272 |
response_text = ""
|
| 273 |
for message in inference_client.chat_completion(
|
|
@@ -275,30 +302,31 @@ async def ai_chat(request: ChatRequest):
|
|
| 275 |
messages=messages,
|
| 276 |
max_tokens=2000,
|
| 277 |
temperature=0.7,
|
| 278 |
-
stream=True
|
| 279 |
):
|
| 280 |
-
if hasattr(message,
|
| 281 |
delta = message.choices[0].delta
|
| 282 |
-
if hasattr(delta,
|
| 283 |
response_text += delta.content
|
| 284 |
-
|
| 285 |
return {
|
| 286 |
"success": True,
|
| 287 |
"response": response_text,
|
| 288 |
"model": request.model,
|
| 289 |
-
"timestamp": datetime.now().isoformat()
|
| 290 |
}
|
| 291 |
-
|
| 292 |
except Exception as e:
|
| 293 |
raise HTTPException(status_code=500, detail=f"AI generation failed: {str(e)}")
|
| 294 |
|
|
|
|
| 295 |
@app.post("/ai/generate")
|
| 296 |
async def ai_generate(request: AIRequest):
|
| 297 |
"""Generic AI generation endpoint"""
|
| 298 |
try:
|
| 299 |
# Determine task type based on model
|
| 300 |
model_lower = request.model.lower()
|
| 301 |
-
|
| 302 |
if "flux" in model_lower or "stable-diffusion" in model_lower:
|
| 303 |
# Image generation
|
| 304 |
return {
|
|
@@ -306,9 +334,9 @@ async def ai_generate(request: AIRequest):
|
|
| 306 |
"type": "image",
|
| 307 |
"message": f"Image generation with {request.model}",
|
| 308 |
"prompt": request.prompt,
|
| 309 |
-
"note": "Image will be generated using HuggingFace Inference API"
|
| 310 |
}
|
| 311 |
-
|
| 312 |
elif "video" in model_lower:
|
| 313 |
# Video generation
|
| 314 |
return {
|
|
@@ -316,51 +344,53 @@ async def ai_generate(request: AIRequest):
|
|
| 316 |
"type": "video",
|
| 317 |
"message": f"Video generation with {request.model}",
|
| 318 |
"prompt": request.prompt,
|
| 319 |
-
"note": "Video will be generated using HuggingFace Inference API"
|
| 320 |
}
|
| 321 |
-
|
| 322 |
else:
|
| 323 |
# Text generation (default)
|
| 324 |
messages = [{"role": "user", "content": request.prompt}]
|
| 325 |
response_text = ""
|
| 326 |
-
|
| 327 |
for message in inference_client.chat_completion(
|
| 328 |
model=request.model,
|
| 329 |
messages=messages,
|
| 330 |
max_tokens=request.max_tokens,
|
| 331 |
temperature=request.temperature,
|
| 332 |
-
stream=True
|
| 333 |
):
|
| 334 |
-
if hasattr(message,
|
| 335 |
delta = message.choices[0].delta
|
| 336 |
-
if hasattr(delta,
|
| 337 |
response_text += delta.content
|
| 338 |
-
|
| 339 |
return {
|
| 340 |
"success": True,
|
| 341 |
"type": "text",
|
| 342 |
"response": response_text,
|
| 343 |
"model": request.model,
|
| 344 |
-
"timestamp": datetime.now().isoformat()
|
| 345 |
}
|
| 346 |
-
|
| 347 |
except Exception as e:
|
| 348 |
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
|
| 349 |
|
|
|
|
| 350 |
@app.get("/models/list")
|
| 351 |
async def list_models():
|
| 352 |
"""List all available AI models"""
|
| 353 |
return {
|
| 354 |
"total": 211,
|
| 355 |
"categories": AI_MODELS,
|
| 356 |
-
"note": "All models are accessed via HuggingFace Inference API"
|
| 357 |
}
|
| 358 |
|
|
|
|
| 359 |
@app.get("/cloudflare/status")
|
| 360 |
async def cloudflare_status():
|
| 361 |
"""Cloudflare services status"""
|
| 362 |
services = []
|
| 363 |
-
|
| 364 |
if CLOUDFLARE_CONFIG["api_token"]:
|
| 365 |
services.append("β
API Token Configured")
|
| 366 |
if CLOUDFLARE_CONFIG["d1_database_id"]:
|
|
@@ -375,17 +405,13 @@ async def cloudflare_status():
|
|
| 375 |
services.append("β
Durable Objects (Agent Sessions)")
|
| 376 |
if CLOUDFLARE_CONFIG["durable_objects_chatrooms"]:
|
| 377 |
services.append("β
Durable Objects (Chat Rooms)")
|
| 378 |
-
|
| 379 |
return {
|
| 380 |
"configured": len(services) > 0,
|
| 381 |
"services": services,
|
| 382 |
-
"account_id": CLOUDFLARE_CONFIG["account_id"]
|
| 383 |
}
|
| 384 |
|
|
|
|
| 385 |
if __name__ == "__main__":
|
| 386 |
-
uvicorn.run(
|
| 387 |
-
app,
|
| 388 |
-
host="0.0.0.0",
|
| 389 |
-
port=7860,
|
| 390 |
-
log_level="info"
|
| 391 |
-
)
|
|
|
|
| 17 |
|
| 18 |
# HuggingFace Inference Client
|
| 19 |
HF_TOKEN = os.getenv("HF_TOKEN", "")
|
| 20 |
+
inference_client = InferenceClient(
|
| 21 |
+
token=HF_TOKEN if HF_TOKEN else None,
|
| 22 |
+
base_url="https://router.huggingface.co/hf-inference"
|
| 23 |
+
)
|
| 24 |
|
| 25 |
# Cloudflare Configuration
|
| 26 |
CLOUDFLARE_CONFIG = {
|
| 27 |
"api_token": os.getenv("CLOUDFLARE_API_TOKEN", ""),
|
| 28 |
+
"account_id": os.getenv(
|
| 29 |
+
"CLOUDFLARE_ACCOUNT_ID", "62af59a7ac82b29543577ee6800735ee"
|
| 30 |
+
),
|
| 31 |
+
"d1_database_id": os.getenv(
|
| 32 |
+
"CLOUDFLARE_D1_DATABASE_ID", "6d887f74-98ac-4db7-bfed-8061903d1f6c"
|
| 33 |
+
),
|
| 34 |
"r2_bucket_name": os.getenv("CLOUDFLARE_R2_BUCKET_NAME", "openmanus-storage"),
|
| 35 |
+
"kv_namespace_id": os.getenv(
|
| 36 |
+
"CLOUDFLARE_KV_NAMESPACE_ID", "87f4aa01410d4fb19821f61006f94441"
|
| 37 |
+
),
|
| 38 |
+
"kv_namespace_cache": os.getenv(
|
| 39 |
+
"CLOUDFLARE_KV_CACHE_ID", "7b58c88292c847d1a82c8e0dd5129f37"
|
| 40 |
+
),
|
| 41 |
"durable_objects_sessions": "AGENT_SESSIONS",
|
| 42 |
"durable_objects_chatrooms": "CHAT_ROOMS",
|
| 43 |
}
|
|
|
|
| 106 |
allow_headers=["*"],
|
| 107 |
)
|
| 108 |
|
| 109 |
+
|
| 110 |
# Database initialization
|
| 111 |
def init_database():
|
| 112 |
"""Initialize SQLite database for user authentication"""
|
| 113 |
conn = sqlite3.connect("openmanus.db")
|
| 114 |
cursor = conn.cursor()
|
| 115 |
+
cursor.execute(
|
| 116 |
+
"""
|
| 117 |
CREATE TABLE IF NOT EXISTS users (
|
| 118 |
id INTEGER PRIMARY KEY AUTOINCREMENT,
|
| 119 |
mobile TEXT UNIQUE NOT NULL,
|
|
|
|
| 121 |
password_hash TEXT NOT NULL,
|
| 122 |
created_at TIMESTAMP DEFAULT CURRENT_TIMESTAMP
|
| 123 |
)
|
| 124 |
+
"""
|
| 125 |
+
)
|
| 126 |
conn.commit()
|
| 127 |
conn.close()
|
| 128 |
|
| 129 |
+
|
| 130 |
init_database()
|
| 131 |
|
| 132 |
+
|
| 133 |
# Pydantic Models
|
| 134 |
class SignupRequest(BaseModel):
|
| 135 |
mobile: str
|
| 136 |
name: str
|
| 137 |
password: str
|
| 138 |
|
| 139 |
+
|
| 140 |
class LoginRequest(BaseModel):
|
| 141 |
mobile: str
|
| 142 |
password: str
|
| 143 |
|
| 144 |
+
|
| 145 |
class AIRequest(BaseModel):
|
| 146 |
model: str
|
| 147 |
prompt: str
|
| 148 |
max_tokens: Optional[int] = 2000
|
| 149 |
temperature: Optional[float] = 0.7
|
| 150 |
|
| 151 |
+
|
| 152 |
class ChatRequest(BaseModel):
|
| 153 |
message: str
|
| 154 |
model: Optional[str] = "Qwen/Qwen2.5-72B-Instruct"
|
| 155 |
history: Optional[List[Dict[str, str]]] = []
|
| 156 |
|
| 157 |
+
|
| 158 |
# Helper Functions
|
| 159 |
def hash_password(password: str) -> str:
|
| 160 |
"""Hash password using SHA-256"""
|
| 161 |
return hashlib.sha256(password.encode()).hexdigest()
|
| 162 |
|
| 163 |
+
|
| 164 |
def verify_password(password: str, password_hash: str) -> bool:
|
| 165 |
"""Verify password against hash"""
|
| 166 |
return hash_password(password) == password_hash
|
| 167 |
|
| 168 |
+
|
| 169 |
# API Endpoints
|
| 170 |
|
| 171 |
+
|
| 172 |
@app.get("/")
|
| 173 |
async def root():
|
| 174 |
"""Root endpoint"""
|
|
|
|
| 182 |
"auth": "/auth/signup, /auth/login",
|
| 183 |
"ai": "/ai/chat, /ai/generate",
|
| 184 |
"models": "/models/list",
|
| 185 |
+
},
|
| 186 |
}
|
| 187 |
|
| 188 |
+
|
| 189 |
@app.get("/health")
|
| 190 |
async def health_check():
|
| 191 |
"""Health check endpoint"""
|
|
|
|
| 198 |
"cloudflare_configured": bool(CLOUDFLARE_CONFIG["api_token"]),
|
| 199 |
}
|
| 200 |
|
| 201 |
+
|
| 202 |
@app.post("/auth/signup")
|
| 203 |
async def signup(request: SignupRequest):
|
| 204 |
"""User registration endpoint"""
|
| 205 |
try:
|
| 206 |
if len(request.password) < 6:
|
| 207 |
+
raise HTTPException(
|
| 208 |
+
status_code=400, detail="Password must be at least 6 characters"
|
| 209 |
+
)
|
| 210 |
+
|
| 211 |
conn = sqlite3.connect("openmanus.db")
|
| 212 |
cursor = conn.cursor()
|
| 213 |
+
|
| 214 |
# Check if user exists
|
| 215 |
cursor.execute("SELECT mobile FROM users WHERE mobile = ?", (request.mobile,))
|
| 216 |
if cursor.fetchone():
|
| 217 |
conn.close()
|
| 218 |
+
raise HTTPException(
|
| 219 |
+
status_code=400, detail="Mobile number already registered"
|
| 220 |
+
)
|
| 221 |
+
|
| 222 |
# Insert new user
|
| 223 |
password_hash = hash_password(request.password)
|
| 224 |
cursor.execute(
|
| 225 |
"INSERT INTO users (mobile, name, password_hash) VALUES (?, ?, ?)",
|
| 226 |
+
(request.mobile, request.name, password_hash),
|
| 227 |
)
|
| 228 |
conn.commit()
|
| 229 |
conn.close()
|
| 230 |
+
|
| 231 |
return {
|
| 232 |
"success": True,
|
| 233 |
"message": "Account created successfully",
|
| 234 |
"mobile": request.mobile,
|
| 235 |
+
"name": request.name,
|
| 236 |
}
|
| 237 |
+
|
| 238 |
except HTTPException:
|
| 239 |
raise
|
| 240 |
except Exception as e:
|
| 241 |
raise HTTPException(status_code=500, detail=f"Registration failed: {str(e)}")
|
| 242 |
|
| 243 |
+
|
| 244 |
@app.post("/auth/login")
|
| 245 |
async def login(request: LoginRequest):
|
| 246 |
"""User login endpoint"""
|
| 247 |
try:
|
| 248 |
conn = sqlite3.connect("openmanus.db")
|
| 249 |
cursor = conn.cursor()
|
| 250 |
+
|
| 251 |
cursor.execute(
|
| 252 |
+
"SELECT name, password_hash FROM users WHERE mobile = ?", (request.mobile,)
|
|
|
|
| 253 |
)
|
| 254 |
result = cursor.fetchone()
|
| 255 |
conn.close()
|
| 256 |
+
|
| 257 |
if not result:
|
| 258 |
+
raise HTTPException(
|
| 259 |
+
status_code=401, detail="Invalid mobile number or password"
|
| 260 |
+
)
|
| 261 |
+
|
| 262 |
name, password_hash = result
|
| 263 |
+
|
| 264 |
if not verify_password(request.password, password_hash):
|
| 265 |
+
raise HTTPException(
|
| 266 |
+
status_code=401, detail="Invalid mobile number or password"
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
return {
|
| 270 |
"success": True,
|
| 271 |
"message": "Login successful",
|
| 272 |
+
"user": {"mobile": request.mobile, "name": name},
|
| 273 |
+
"token": f"session_{hash_password(request.mobile + str(datetime.now()))[:32]}",
|
|
|
|
|
|
|
|
|
|
| 274 |
}
|
| 275 |
+
|
| 276 |
except HTTPException:
|
| 277 |
raise
|
| 278 |
except Exception as e:
|
| 279 |
raise HTTPException(status_code=500, detail=f"Login failed: {str(e)}")
|
| 280 |
|
| 281 |
+
|
| 282 |
@app.post("/ai/chat")
|
| 283 |
async def ai_chat(request: ChatRequest):
|
| 284 |
"""AI chat endpoint - main endpoint for AI interactions"""
|
| 285 |
try:
|
| 286 |
# Prepare messages for chat completion
|
| 287 |
messages = []
|
| 288 |
+
|
| 289 |
# Add history
|
| 290 |
for msg in request.history:
|
| 291 |
+
messages.append(
|
| 292 |
+
{"role": msg.get("role", "user"), "content": msg.get("content", "")}
|
| 293 |
+
)
|
| 294 |
+
|
|
|
|
| 295 |
# Add current message
|
| 296 |
+
messages.append({"role": "user", "content": request.message})
|
| 297 |
+
|
|
|
|
|
|
|
|
|
|
| 298 |
# Call HuggingFace Inference API
|
| 299 |
response_text = ""
|
| 300 |
for message in inference_client.chat_completion(
|
|
|
|
| 302 |
messages=messages,
|
| 303 |
max_tokens=2000,
|
| 304 |
temperature=0.7,
|
| 305 |
+
stream=True,
|
| 306 |
):
|
| 307 |
+
if hasattr(message, "choices") and len(message.choices) > 0:
|
| 308 |
delta = message.choices[0].delta
|
| 309 |
+
if hasattr(delta, "content") and delta.content:
|
| 310 |
response_text += delta.content
|
| 311 |
+
|
| 312 |
return {
|
| 313 |
"success": True,
|
| 314 |
"response": response_text,
|
| 315 |
"model": request.model,
|
| 316 |
+
"timestamp": datetime.now().isoformat(),
|
| 317 |
}
|
| 318 |
+
|
| 319 |
except Exception as e:
|
| 320 |
raise HTTPException(status_code=500, detail=f"AI generation failed: {str(e)}")
|
| 321 |
|
| 322 |
+
|
| 323 |
@app.post("/ai/generate")
|
| 324 |
async def ai_generate(request: AIRequest):
|
| 325 |
"""Generic AI generation endpoint"""
|
| 326 |
try:
|
| 327 |
# Determine task type based on model
|
| 328 |
model_lower = request.model.lower()
|
| 329 |
+
|
| 330 |
if "flux" in model_lower or "stable-diffusion" in model_lower:
|
| 331 |
# Image generation
|
| 332 |
return {
|
|
|
|
| 334 |
"type": "image",
|
| 335 |
"message": f"Image generation with {request.model}",
|
| 336 |
"prompt": request.prompt,
|
| 337 |
+
"note": "Image will be generated using HuggingFace Inference API",
|
| 338 |
}
|
| 339 |
+
|
| 340 |
elif "video" in model_lower:
|
| 341 |
# Video generation
|
| 342 |
return {
|
|
|
|
| 344 |
"type": "video",
|
| 345 |
"message": f"Video generation with {request.model}",
|
| 346 |
"prompt": request.prompt,
|
| 347 |
+
"note": "Video will be generated using HuggingFace Inference API",
|
| 348 |
}
|
| 349 |
+
|
| 350 |
else:
|
| 351 |
# Text generation (default)
|
| 352 |
messages = [{"role": "user", "content": request.prompt}]
|
| 353 |
response_text = ""
|
| 354 |
+
|
| 355 |
for message in inference_client.chat_completion(
|
| 356 |
model=request.model,
|
| 357 |
messages=messages,
|
| 358 |
max_tokens=request.max_tokens,
|
| 359 |
temperature=request.temperature,
|
| 360 |
+
stream=True,
|
| 361 |
):
|
| 362 |
+
if hasattr(message, "choices") and len(message.choices) > 0:
|
| 363 |
delta = message.choices[0].delta
|
| 364 |
+
if hasattr(delta, "content") and delta.content:
|
| 365 |
response_text += delta.content
|
| 366 |
+
|
| 367 |
return {
|
| 368 |
"success": True,
|
| 369 |
"type": "text",
|
| 370 |
"response": response_text,
|
| 371 |
"model": request.model,
|
| 372 |
+
"timestamp": datetime.now().isoformat(),
|
| 373 |
}
|
| 374 |
+
|
| 375 |
except Exception as e:
|
| 376 |
raise HTTPException(status_code=500, detail=f"Generation failed: {str(e)}")
|
| 377 |
|
| 378 |
+
|
| 379 |
@app.get("/models/list")
|
| 380 |
async def list_models():
|
| 381 |
"""List all available AI models"""
|
| 382 |
return {
|
| 383 |
"total": 211,
|
| 384 |
"categories": AI_MODELS,
|
| 385 |
+
"note": "All models are accessed via HuggingFace Inference API",
|
| 386 |
}
|
| 387 |
|
| 388 |
+
|
| 389 |
@app.get("/cloudflare/status")
|
| 390 |
async def cloudflare_status():
|
| 391 |
"""Cloudflare services status"""
|
| 392 |
services = []
|
| 393 |
+
|
| 394 |
if CLOUDFLARE_CONFIG["api_token"]:
|
| 395 |
services.append("β
API Token Configured")
|
| 396 |
if CLOUDFLARE_CONFIG["d1_database_id"]:
|
|
|
|
| 405 |
services.append("β
Durable Objects (Agent Sessions)")
|
| 406 |
if CLOUDFLARE_CONFIG["durable_objects_chatrooms"]:
|
| 407 |
services.append("β
Durable Objects (Chat Rooms)")
|
| 408 |
+
|
| 409 |
return {
|
| 410 |
"configured": len(services) > 0,
|
| 411 |
"services": services,
|
| 412 |
+
"account_id": CLOUDFLARE_CONFIG["account_id"],
|
| 413 |
}
|
| 414 |
|
| 415 |
+
|
| 416 |
if __name__ == "__main__":
|
| 417 |
+
uvicorn.run(app, host="0.0.0.0", port=7860, log_level="info")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|