Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| from diffusers import AutoPipelineForText2Image | |
| # List of available models | |
| MODEL_OPTIONS = { | |
| "Stable Diffusion 1.5": "runwayml/stable-diffusion-v1-5", | |
| "Stable Diffusion 2.1": "stabilityai/stable-diffusion-2-1", | |
| "Stable Diffusion XL": "stabilityai/stable-diffusion-xl-base-1.0" | |
| } | |
| def generate_image( | |
| model_choice, | |
| lora_url, | |
| prompt, | |
| negative_prompt, | |
| steps, | |
| width, | |
| height, | |
| guidance_scale, | |
| seed | |
| ): | |
| # Get the selected model ID | |
| model_id = MODEL_OPTIONS[model_choice] | |
| # Initialize the pipeline | |
| pipe = AutoPipelineForText2Image.from_pretrained( | |
| model_id, | |
| torch_dtype=torch.float16, | |
| use_safetensors=True | |
| ).to("cuda") | |
| # Load LoRA weights if provided | |
| if lora_url: | |
| pipe.load_lora_weights(lora_url) | |
| pipe.fuse_lora() | |
| # Set up generator with seed if provided | |
| generator = None | |
| if seed: | |
| generator = torch.Generator(device="cuda").manual_seed(int(seed)) | |
| # Generate image | |
| image = pipe( | |
| prompt=prompt, | |
| negative_prompt=negative_prompt, | |
| num_inference_steps=int(steps), | |
| width=int(width), | |
| height=int(height), | |
| guidance_scale=guidance_scale, | |
| generator=generator | |
| ).images[0] | |
| return image | |
| # Gradio UI components | |
| with gr.Blocks() as demo: | |
| gr.Markdown("## 🎨 Text-to-Image Generation with LoRA") | |
| with gr.Row(): | |
| with gr.Column(): | |
| model_choice = gr.Dropdown( | |
| label="Select Base Model", | |
| choices=list(MODEL_OPTIONS.keys()), | |
| value="Stable Diffusion XL" | |
| ) | |
| lora_url = gr.Textbox( | |
| label="LoRA Repository ID (e.g., 'username/lora-name')", | |
| placeholder="Optional Hugging Face repository ID" | |
| ) | |
| prompt = gr.Textbox( | |
| label="Prompt", | |
| placeholder="Enter your prompt here..." | |
| ) | |
| negative_prompt = gr.Textbox( | |
| label="Negative Prompt", | |
| placeholder="Enter what to exclude from the image..." | |
| ) | |
| with gr.Row(): | |
| steps = gr.Number( | |
| label="Inference Steps", | |
| value=25, | |
| precision=0 | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1.0, | |
| maximum=20.0, | |
| value=7.5 | |
| ) | |
| with gr.Row(): | |
| width = gr.Number( | |
| label="Width", | |
| value=1024, | |
| precision=0 | |
| ) | |
| height = gr.Number( | |
| label="Height", | |
| value=1024, | |
| precision=0 | |
| ) | |
| seed = gr.Number( | |
| label="Seed (optional)", | |
| precision=0 | |
| ) | |
| generate_btn = gr.Button("Generate Image", variant="primary") | |
| with gr.Column(): | |
| output_image = gr.Image(label="Generated Image", height=600) | |
| generate_btn.click( | |
| fn=generate_image, | |
| inputs=[ | |
| model_choice, | |
| lora_url, | |
| prompt, | |
| negative_prompt, | |
| steps, | |
| width, | |
| height, | |
| guidance_scale, | |
| seed | |
| ], | |
| outputs=output_image | |
| ) | |
| demo.launch() |