Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
| # Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
| # | |
| # -------------------------------------------------------- | |
| # Matches Triangulation Utils | |
| # -------------------------------------------------------- | |
| import numpy as np | |
| import torch | |
| # Batched Matches Triangulation | |
| def batched_triangulate(pts2d, # [B, Ncams, Npts, 2] | |
| proj_mats): # [B, Ncams, 3, 4] I@E projection matrix | |
| B, Ncams, Npts, two = pts2d.shape | |
| assert two==2 | |
| assert proj_mats.shape == (B, Ncams, 3, 4) | |
| # P - xP | |
| x = proj_mats[...,0,:][...,None,:] - torch.einsum('bij,bik->bijk', pts2d[...,0], proj_mats[...,2,:]) # [B, Ncams, Npts, 4] | |
| y = proj_mats[...,1,:][...,None,:] - torch.einsum('bij,bik->bijk', pts2d[...,1], proj_mats[...,2,:]) # [B, Ncams, Npts, 4] | |
| eq = torch.cat([x, y], dim=1).transpose(1, 2) # [B, Npts, 2xNcams, 4] | |
| return torch.linalg.lstsq(eq[...,:3], -eq[...,3]).solution | |
| def matches_to_depths(intrinsics, # input camera intrinsics [B, Ncams, 3, 3] | |
| extrinsics, # input camera extrinsics [B, Ncams, 3, 4] | |
| matches, # input correspondences [B, Ncams, Npts, 2] | |
| batchsize=16, # bs for batched processing | |
| min_num_valids_ratio=.3 # at least this ratio of image pairs need to predict a match for a given pixel of img1 | |
| ): | |
| B, Nv, H, W, five = matches.shape | |
| min_num_valids = np.floor(Nv*min_num_valids_ratio) | |
| out_aggregated_points, out_depths, out_confs = [], [], [] | |
| for b in range(B//batchsize+1): # batched processing | |
| start, stop = b*batchsize,min(B,(b+1)*batchsize) | |
| sub_batch=slice(start,stop) | |
| sub_batchsize = stop-start | |
| if sub_batchsize==0:continue | |
| points1, points2, confs = matches[sub_batch, ..., :2], matches[sub_batch, ..., 2:4], matches[sub_batch, ..., -1] | |
| allpoints = torch.cat([points1.view([sub_batchsize*Nv,1,H*W,2]), points2.view([sub_batchsize*Nv,1,H*W,2])],dim=1) # [BxNv, 2, HxW, 2] | |
| allcam_Ps = intrinsics[sub_batch] @ extrinsics[sub_batch,:,:3,:] | |
| cam_Ps1, cam_Ps2 = allcam_Ps[:,[0]].repeat([1,Nv,1,1]), allcam_Ps[:,1:] # [B, Nv, 3, 4] | |
| formatted_camPs = torch.cat([cam_Ps1.reshape([sub_batchsize*Nv,1,3,4]), cam_Ps2.reshape([sub_batchsize*Nv,1,3,4])],dim=1) # [BxNv, 2, 3, 4] | |
| # Triangulate matches to 3D | |
| points_3d_world = batched_triangulate(allpoints, formatted_camPs) # [BxNv, HxW, three] | |
| # Aggregate pairwise predictions | |
| points_3d_world = points_3d_world.view([sub_batchsize,Nv,H,W,3]) | |
| valids = points_3d_world.isfinite() | |
| valids_sum = valids.sum(dim=-1) | |
| validsuni=valids_sum.unique() | |
| assert torch.all(torch.logical_or(validsuni == 0 , validsuni == 3)), "Error, can only be nan for none or all XYZ values, not a subset" | |
| confs[valids_sum==0] = 0. | |
| points_3d_world = points_3d_world*confs[...,None] | |
| # Take care of NaNs | |
| normalization = confs.sum(dim=1)[:,None].repeat(1,Nv,1,1) | |
| normalization[normalization <= 1e-5] = 1. | |
| points_3d_world[valids] /= normalization[valids_sum==3][:,None].repeat(1,3).view(-1) | |
| points_3d_world[~valids] = 0. | |
| aggregated_points = points_3d_world.sum(dim=1) # weighted average (by confidence value) ignoring nans | |
| # Reset invalid values to nans, with a min visibility threshold | |
| aggregated_points[valids_sum.sum(dim=1)/3 <= min_num_valids] = torch.nan | |
| # From 3D to depths | |
| refcamE = extrinsics[sub_batch, 0] | |
| points_3d_camera = (refcamE[:,:3, :3] @ aggregated_points.view(sub_batchsize,-1,3).transpose(-2,-1) + refcamE[:,:3,[3]]).transpose(-2,-1) # [B,HxW,3] | |
| depths = points_3d_camera.view(sub_batchsize,H,W,3)[..., 2] # [B,H,W] | |
| # Cat results | |
| out_aggregated_points.append(aggregated_points.cpu()) | |
| out_depths.append(depths.cpu()) | |
| out_confs.append(confs.sum(dim=1).cpu()) | |
| out_aggregated_points = torch.cat(out_aggregated_points,dim=0) | |
| out_depths = torch.cat(out_depths,dim=0) | |
| out_confs = torch.cat(out_confs,dim=0) | |
| return out_aggregated_points, out_depths, out_confs | |