Spaces:
Sleeping
Sleeping
YeCanming
commited on
Commit
·
4dcd117
1
Parent(s):
5bf137e
feat: presentation
Browse files- .streamlit/config.toml +10 -10
- .streamlit/theme.toml +2 -2
- src copy/components/metrics_visualizer.py +39 -0
- src copy/data_loader.py +207 -0
- src copy/data_models.py +100 -0
- src copy/streamlit_app.py +634 -0
- src copy/theme_selector.py +162 -0
- {src → src copy}/utils.py +0 -0
- src/.streamlit/config.toml +17 -0
- src/.streamlit/theme.toml +2 -0
- src/.streamlit/themes/antropic.toml +20 -0
- src/.streamlit/themes/flowers_bright.toml +20 -0
- src/.streamlit/themes/spotify.toml +19 -0
- src/.streamlit/themes/willows_dark.toml +20 -0
- src/data_loader.py +3 -1
- src/infra.py +16 -0
- src/logo.png +3 -0
- src/streamlit_app.py +73 -35
- src/test.py +0 -42
- src/visualizers/base_visualizer.py +0 -254
- src/visualizers/ide_app.py +0 -303
- src/visualizers/scalar_dashboard_visualizer.py +0 -333
.streamlit/config.toml
CHANGED
|
@@ -1,17 +1,17 @@
|
|
| 1 |
[theme]
|
| 2 |
base = "dark"
|
| 3 |
baseFontSize = 15
|
| 4 |
-
primaryColor = "#
|
| 5 |
-
backgroundColor = "#
|
| 6 |
-
secondaryBackgroundColor = "#
|
| 7 |
-
textColor = "#
|
| 8 |
-
linkColor = "#
|
| 9 |
-
borderColor = "#
|
| 10 |
showWidgetBorder = false
|
| 11 |
baseRadius = "0.3rem"
|
| 12 |
-
font = "
|
| 13 |
|
| 14 |
[theme.sidebar]
|
| 15 |
-
backgroundColor = "#
|
| 16 |
-
secondaryBackgroundColor = "#
|
| 17 |
-
borderColor = "#
|
|
|
|
| 1 |
[theme]
|
| 2 |
base = "dark"
|
| 3 |
baseFontSize = 15
|
| 4 |
+
primaryColor = "#1ED760"
|
| 5 |
+
backgroundColor = "#121212"
|
| 6 |
+
secondaryBackgroundColor = "#333333"
|
| 7 |
+
textColor = "#FFFFFF"
|
| 8 |
+
linkColor = "#9D9D9D"
|
| 9 |
+
borderColor = "#7F7F7F"
|
| 10 |
showWidgetBorder = false
|
| 11 |
baseRadius = "0.3rem"
|
| 12 |
+
font = "Poppins"
|
| 13 |
|
| 14 |
[theme.sidebar]
|
| 15 |
+
backgroundColor = "#000000"
|
| 16 |
+
secondaryBackgroundColor = "#333333"
|
| 17 |
+
borderColor = "#696969"
|
.streamlit/theme.toml
CHANGED
|
@@ -1,2 +1,2 @@
|
|
| 1 |
-
theme_name = "
|
| 2 |
-
theme_poem = "
|
|
|
|
| 1 |
+
theme_name = "Spotify"
|
| 2 |
+
theme_poem = ""
|
src copy/components/metrics_visualizer.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import plotly.graph_objects as go
|
| 3 |
+
import plotly.express as px
|
| 4 |
+
import time
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
def render_metrics_charts(current_study, current_trial):
|
| 8 |
+
"""把原来在 tab_charts 里的 DataFrame 可视化代码都搬进来,只依赖 current_trial 和 st.session_state."""
|
| 9 |
+
if not current_trial.metrics_data:
|
| 10 |
+
st.info("当前 Trial 没有可显示的指标数据。")
|
| 11 |
+
return
|
| 12 |
+
|
| 13 |
+
# 全局步骤控制、st.session_state.shared_selected_global_step 等逻辑照搬
|
| 14 |
+
# …(省略,直接粘进去原来 streamlit_app.py 中的控制器和自动播放部分)…
|
| 15 |
+
|
| 16 |
+
# 然后就是那段循环绘图和 st.metric + st.plotly_chart + st.dataframe
|
| 17 |
+
metric_names = sorted(current_trial.metrics_data.keys())
|
| 18 |
+
cols_per_row = st.slider(
|
| 19 |
+
"每行图表数量",
|
| 20 |
+
1,
|
| 21 |
+
4,
|
| 22 |
+
2,
|
| 23 |
+
key=f"cols_slider_{current_study.name}_{current_trial.name}",
|
| 24 |
+
)
|
| 25 |
+
for i in range(0, len(metric_names), cols_per_row):
|
| 26 |
+
chunk = metric_names[i : i + cols_per_row]
|
| 27 |
+
cols = st.columns(len(chunk))
|
| 28 |
+
for j, m in enumerate(chunk):
|
| 29 |
+
with cols[j]:
|
| 30 |
+
df = current_trial.get_metric_dataframe(m)
|
| 31 |
+
if df is None or df.empty:
|
| 32 |
+
st.warning(f"指标 '{m}' 无数据")
|
| 33 |
+
continue
|
| 34 |
+
st.subheader(m)
|
| 35 |
+
# …Metric 计算 + Plotly 绘制 + 高亮 + 点击同步…
|
| 36 |
+
fig = go.Figure()
|
| 37 |
+
# …省略:完全同原来逻辑…
|
| 38 |
+
st.plotly_chart(fig, use_container_width=True, key=f"chart_{m}")
|
| 39 |
+
st.dataframe(df)
|
src copy/data_loader.py
ADDED
|
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# data_loader.py
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from typing import Dict, List, Any
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import tomli
|
| 6 |
+
import streamlit as st
|
| 7 |
+
from functools import lru_cache # For non-Streamlit specific caching if needed
|
| 8 |
+
|
| 9 |
+
# Assuming utils.py is in the same directory
|
| 10 |
+
from utils import DATA_ROOT_PATH # Used for ensuring directory exists
|
| 11 |
+
|
| 12 |
+
# --- Cache Clearing Functions ---
|
| 13 |
+
# These are more specific cache clearing functions that can be called by model methods.
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def clear_study_cache():
|
| 17 |
+
"""Clears all study discovery cache."""
|
| 18 |
+
discover_studies_cached.clear()
|
| 19 |
+
st.toast("所有 Study 发现缓存已清除。")
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
def clear_trial_cache():
|
| 23 |
+
"""Clears all trial-related data loading caches."""
|
| 24 |
+
# This is a bit broad. Ideally, clear caches for specific trials/studies.
|
| 25 |
+
load_input_variables_from_path.clear()
|
| 26 |
+
load_all_metrics_for_trial_path.clear()
|
| 27 |
+
discover_trials_from_path.clear()
|
| 28 |
+
st.toast("所有 Trial 数据加载缓存已清除。")
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
def clear_specific_trial_metric_cache(trial_path: Path):
|
| 32 |
+
load_all_metrics_for_trial_path.clear() # This clears the whole cache for this func
|
| 33 |
+
# For more granular control with @st.cache_data, you'd typically rely on Streamlit's
|
| 34 |
+
# automatic cache invalidation based on input args, or rerun.
|
| 35 |
+
# If using lru_cache, you could do: load_all_metrics_for_trial_path.cache_clear()
|
| 36 |
+
# but for st.cache_data, clearing for specific args is not direct.
|
| 37 |
+
# The common pattern is to clear the entire function's cache.
|
| 38 |
+
st.toast(f"Trial '{trial_path.name}' 的指标缓存已清除 (函数级别)。")
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
def clear_specific_trial_input_vars_cache(trial_path: Path):
|
| 42 |
+
load_input_variables_from_path.clear()
|
| 43 |
+
st.toast(f"Trial '{trial_path.name}' 的参数缓存已清除 (函数级别)。")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def clear_specific_study_trial_discovery_cache(study_path: Path):
|
| 47 |
+
discover_trials_from_path.clear()
|
| 48 |
+
st.toast(f"Study '{study_path.name}' 的 Trial 发现缓存已清除 (函数级别)。")
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
# --- Data Discovery and Loading Functions (Cached) ---
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def ensure_data_directory_exists(data_path: Path = DATA_ROOT_PATH):
|
| 55 |
+
"""Ensures the root data directory exists."""
|
| 56 |
+
if not data_path.exists():
|
| 57 |
+
try:
|
| 58 |
+
data_path.mkdir(parents=True, exist_ok=True)
|
| 59 |
+
st.info(f"数据目录 {data_path} 已创建。")
|
| 60 |
+
except Exception as e:
|
| 61 |
+
st.error(f"创建数据目录 {data_path} 失败: {e}")
|
| 62 |
+
st.stop()
|
| 63 |
+
elif not data_path.is_dir():
|
| 64 |
+
st.error(f"路径 {data_path} 已存在但不是一个目录。")
|
| 65 |
+
st.stop()
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
@st.cache_data(ttl=3600) # Cache for 1 hour, or adjust as needed
|
| 69 |
+
def discover_studies_cached(
|
| 70 |
+
_data_root: Path,
|
| 71 |
+
) -> Dict[
|
| 72 |
+
str, Any
|
| 73 |
+
]: # Return type hint as Any to avoid circular dep with data_models.Study
|
| 74 |
+
"""
|
| 75 |
+
Scans the data_root for study directories and returns a dictionary
|
| 76 |
+
mapping study names to Study objects (or just their paths initially).
|
| 77 |
+
The actual Study object creation happens in the main app for now.
|
| 78 |
+
"""
|
| 79 |
+
# To avoid issues with caching complex objects directly, or circular dependencies,
|
| 80 |
+
# this function can return simpler structures like Dict[str, Path]
|
| 81 |
+
# and the main app or model can instantiate Study objects.
|
| 82 |
+
# For this iteration, we'll import Study here for convenience, assuming careful structure.
|
| 83 |
+
from data_models import (
|
| 84 |
+
Study,
|
| 85 |
+
) # Local import to help with potential circularity if models grow complex
|
| 86 |
+
|
| 87 |
+
if not _data_root.is_dir():
|
| 88 |
+
return {}
|
| 89 |
+
studies = {}
|
| 90 |
+
for d in _data_root.iterdir():
|
| 91 |
+
if d.is_dir():
|
| 92 |
+
studies[d.name] = Study(name=d.name, path=d)
|
| 93 |
+
return studies
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
@st.cache_data(ttl=3600)
|
| 97 |
+
def discover_trials_from_path(_study_path: Path) -> Dict[str, Path]:
|
| 98 |
+
"""Scans a study_path for trial directories."""
|
| 99 |
+
if not _study_path.is_dir():
|
| 100 |
+
return {}
|
| 101 |
+
trials = {}
|
| 102 |
+
for d in _study_path.iterdir():
|
| 103 |
+
if d.is_dir():
|
| 104 |
+
trials[d.name] = d
|
| 105 |
+
return trials
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
@st.cache_data(ttl=3600)
|
| 109 |
+
def load_input_variables_from_path(_trial_path: Path) -> Dict[str, Any]:
|
| 110 |
+
"""Loads input_variables.toml from a trial directory."""
|
| 111 |
+
input_vars_file = _trial_path / "input_variables.toml"
|
| 112 |
+
if input_vars_file.exists():
|
| 113 |
+
try:
|
| 114 |
+
with open(input_vars_file, "rb") as f:
|
| 115 |
+
return tomli.load(f)
|
| 116 |
+
except tomli.TOMLDecodeError:
|
| 117 |
+
# st.error(f"错误:无法解析 input_variables.toml 文件于 {_trial_path}") # Avoid st.error in cached funcs if possible
|
| 118 |
+
print(f"Error parsing input_variables.toml at {_trial_path}")
|
| 119 |
+
return {}
|
| 120 |
+
return {}
|
| 121 |
+
|
| 122 |
+
|
| 123 |
+
def _load_single_metric_toml(_toml_file_path: Path) -> pd.DataFrame:
|
| 124 |
+
"""Loads metrics from a single TOML file into a DataFrame."""
|
| 125 |
+
if not _toml_file_path.exists():
|
| 126 |
+
return pd.DataFrame()
|
| 127 |
+
try:
|
| 128 |
+
with open(_toml_file_path, "rb") as f:
|
| 129 |
+
data = tomli.load(f)
|
| 130 |
+
metrics_list = data.get("metrics", [])
|
| 131 |
+
if not metrics_list:
|
| 132 |
+
return pd.DataFrame()
|
| 133 |
+
return pd.DataFrame(metrics_list)
|
| 134 |
+
except tomli.TOMLDecodeError:
|
| 135 |
+
print(f"Error parsing TOML file: {_toml_file_path.name}")
|
| 136 |
+
return pd.DataFrame()
|
| 137 |
+
except Exception as e:
|
| 138 |
+
print(f"Error loading {_toml_file_path.name}: {e}")
|
| 139 |
+
return pd.DataFrame()
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
@st.cache_data(ttl=300) # Cache metric data for 5 minutes
|
| 143 |
+
def load_all_metrics_for_trial_path(_trial_path: Path) -> Dict[str, pd.DataFrame]:
|
| 144 |
+
"""
|
| 145 |
+
Loads all metrics from all tracks in a trial.
|
| 146 |
+
Returns a dictionary where keys are metric names (e.g., 'loss', 'accuracy')
|
| 147 |
+
and values are DataFrames containing 'global_step', 'value', and 'track'.
|
| 148 |
+
"""
|
| 149 |
+
scalar_dir = _trial_path / "logs" / "scalar"
|
| 150 |
+
if not scalar_dir.is_dir():
|
| 151 |
+
return {}
|
| 152 |
+
|
| 153 |
+
all_metrics_data_combined: Dict[str, pd.DataFrame] = {}
|
| 154 |
+
|
| 155 |
+
for toml_file in scalar_dir.glob("metrics_*.toml"):
|
| 156 |
+
track_name = toml_file.stem.replace("metrics_", "")
|
| 157 |
+
df_track = _load_single_metric_toml(toml_file)
|
| 158 |
+
|
| 159 |
+
if df_track.empty or "global_step" not in df_track.columns:
|
| 160 |
+
continue
|
| 161 |
+
|
| 162 |
+
id_vars = ["global_step"]
|
| 163 |
+
value_vars = [col for col in df_track.columns if col not in id_vars]
|
| 164 |
+
|
| 165 |
+
if not value_vars:
|
| 166 |
+
continue
|
| 167 |
+
|
| 168 |
+
# Process each metric column individually to build up the combined DataFrame
|
| 169 |
+
for metric_col_name in value_vars:
|
| 170 |
+
try:
|
| 171 |
+
# Create a DataFrame for the current metric and track
|
| 172 |
+
current_metric_df = df_track[["global_step", metric_col_name]].copy()
|
| 173 |
+
current_metric_df.rename(
|
| 174 |
+
columns={metric_col_name: "value"}, inplace=True
|
| 175 |
+
)
|
| 176 |
+
current_metric_df["track"] = track_name
|
| 177 |
+
current_metric_df["value"] = pd.to_numeric(
|
| 178 |
+
current_metric_df["value"], errors="coerce"
|
| 179 |
+
)
|
| 180 |
+
current_metric_df.dropna(subset=["value"], inplace=True)
|
| 181 |
+
|
| 182 |
+
if current_metric_df.empty:
|
| 183 |
+
continue
|
| 184 |
+
|
| 185 |
+
# Append to the combined DataFrame for this metric_col_name
|
| 186 |
+
if metric_col_name not in all_metrics_data_combined:
|
| 187 |
+
all_metrics_data_combined[metric_col_name] = current_metric_df
|
| 188 |
+
else:
|
| 189 |
+
all_metrics_data_combined[metric_col_name] = pd.concat(
|
| 190 |
+
[all_metrics_data_combined[metric_col_name], current_metric_df],
|
| 191 |
+
ignore_index=True,
|
| 192 |
+
)
|
| 193 |
+
except Exception as e:
|
| 194 |
+
print(
|
| 195 |
+
f"Error processing metric '{metric_col_name}' from file '{toml_file.name}': {e}"
|
| 196 |
+
)
|
| 197 |
+
continue
|
| 198 |
+
|
| 199 |
+
# Sort data by global_step for proper line plotting
|
| 200 |
+
for metric_name in all_metrics_data_combined:
|
| 201 |
+
all_metrics_data_combined[metric_name] = (
|
| 202 |
+
all_metrics_data_combined[metric_name]
|
| 203 |
+
.sort_values(by=["track", "global_step"])
|
| 204 |
+
.reset_index(drop=True)
|
| 205 |
+
)
|
| 206 |
+
|
| 207 |
+
return all_metrics_data_combined
|
src copy/data_models.py
ADDED
|
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# data_models.py
|
| 2 |
+
from dataclasses import dataclass, field
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Dict, List, Optional, Any
|
| 5 |
+
import pandas as pd
|
| 6 |
+
import streamlit as st # For caching
|
| 7 |
+
|
| 8 |
+
# Import from data_loader, assuming it's in the same directory
|
| 9 |
+
# We'll define these functions in data_loader.py
|
| 10 |
+
# To avoid circular imports, data_loader functions won't import data_models directly for type hints if possible,
|
| 11 |
+
# or use string type hints.
|
| 12 |
+
|
| 13 |
+
# Forward declaration for type hint if data_loader needs Study/Trial
|
| 14 |
+
# class Study: pass
|
| 15 |
+
# class Trial: pass
|
| 16 |
+
|
| 17 |
+
from data_loader import (
|
| 18 |
+
load_input_variables_from_path,
|
| 19 |
+
load_all_metrics_for_trial_path,
|
| 20 |
+
discover_trials_from_path,
|
| 21 |
+
clear_trial_cache as clear_trial_loader_cache,
|
| 22 |
+
clear_study_cache as clear_study_loader_cache,
|
| 23 |
+
clear_specific_trial_metric_cache,
|
| 24 |
+
clear_specific_trial_input_vars_cache,
|
| 25 |
+
clear_specific_study_trial_discovery_cache,
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
@dataclass
|
| 30 |
+
class Trial:
|
| 31 |
+
name: str
|
| 32 |
+
path: Path
|
| 33 |
+
study_name: str # To know its parent study
|
| 34 |
+
input_variables: Dict[str, Any] = field(default_factory=dict, repr=False)
|
| 35 |
+
metrics_data: Dict[str, pd.DataFrame] = field(
|
| 36 |
+
default_factory=dict, repr=False
|
| 37 |
+
) # Key: metric_name, Value: DataFrame with global_step, value, track
|
| 38 |
+
|
| 39 |
+
def __post_init__(self):
|
| 40 |
+
# Automatically load data if needed, but prefer explicit calls from UI for clarity
|
| 41 |
+
pass
|
| 42 |
+
|
| 43 |
+
# Use st.cache_data on the loader functions, not directly here for complex objects.
|
| 44 |
+
# Instead, methods here will call cached loader functions.
|
| 45 |
+
|
| 46 |
+
def load_input_variables_cached(self):
|
| 47 |
+
"""Loads or retrieves cached input variables."""
|
| 48 |
+
if not self.input_variables: # Load only if not already populated
|
| 49 |
+
self.input_variables = load_input_variables_from_path(self.path)
|
| 50 |
+
return self.input_variables
|
| 51 |
+
|
| 52 |
+
def load_metrics_cached(self):
|
| 53 |
+
"""Loads or retrieves cached metrics data."""
|
| 54 |
+
if not self.metrics_data: # Load only if not already populated
|
| 55 |
+
self.metrics_data = load_all_metrics_for_trial_path(self.path)
|
| 56 |
+
return self.metrics_data
|
| 57 |
+
|
| 58 |
+
def get_metric_dataframe(self, metric_name: str) -> Optional[pd.DataFrame]:
|
| 59 |
+
"""Returns the DataFrame for a specific metric, combining all tracks."""
|
| 60 |
+
return self.metrics_data.get(metric_name)
|
| 61 |
+
|
| 62 |
+
def clear_cache(self):
|
| 63 |
+
"""Clears cached data for this specific trial."""
|
| 64 |
+
# Clear Streamlit's cache for functions related to this trial
|
| 65 |
+
clear_specific_trial_metric_cache(self.path)
|
| 66 |
+
clear_specific_trial_input_vars_cache(self.path)
|
| 67 |
+
# Reset instance variables
|
| 68 |
+
self.input_variables = {}
|
| 69 |
+
self.metrics_data = {}
|
| 70 |
+
st.success(f"Trial '{self.name}' 的缓存已清除。")
|
| 71 |
+
|
| 72 |
+
|
| 73 |
+
@dataclass
|
| 74 |
+
class Study:
|
| 75 |
+
name: str
|
| 76 |
+
path: Path
|
| 77 |
+
trials: Dict[str, Trial] = field(default_factory=dict, repr=False)
|
| 78 |
+
|
| 79 |
+
def discover_trials_cached(self):
|
| 80 |
+
"""Discovers or retrieves cached trials for this study."""
|
| 81 |
+
if not self.trials: # Discover only if not already populated
|
| 82 |
+
trial_paths = discover_trials_from_path(
|
| 83 |
+
self.path
|
| 84 |
+
) # This loader function should be cached
|
| 85 |
+
for trial_name, trial_path in trial_paths.items():
|
| 86 |
+
self.trials[trial_name] = Trial(
|
| 87 |
+
name=trial_name, path=trial_path, study_name=self.name
|
| 88 |
+
)
|
| 89 |
+
return self.trials
|
| 90 |
+
|
| 91 |
+
def get_trial(self, trial_name: str) -> Optional[Trial]:
|
| 92 |
+
return self.trials.get(trial_name)
|
| 93 |
+
|
| 94 |
+
def clear_cache(self):
|
| 95 |
+
"""Clears cached data for this study and its trials."""
|
| 96 |
+
clear_specific_study_trial_discovery_cache(self.path)
|
| 97 |
+
for trial in self.trials.values():
|
| 98 |
+
trial.clear_cache() # Clear cache for each trial within the study
|
| 99 |
+
self.trials = {} # Reset trials dictionary
|
| 100 |
+
st.success(f"Study '{self.name}' 及其 Trials 的缓存已清除。")
|
src copy/streamlit_app.py
ADDED
|
@@ -0,0 +1,634 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
|
| 3 |
+
# --- Page Configuration ---
|
| 4 |
+
st.set_page_config(
|
| 5 |
+
layout="wide",
|
| 6 |
+
page_title="柳暗花明 (flowillower)",
|
| 7 |
+
page_icon=":sunrise_over_mountains:",
|
| 8 |
+
initial_sidebar_state="expanded",
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
from pathlib import Path
|
| 12 |
+
import plotly.graph_objects as go
|
| 13 |
+
import plotly.express as px
|
| 14 |
+
from plotly.subplots import make_subplots
|
| 15 |
+
import pandas as pd
|
| 16 |
+
import time
|
| 17 |
+
|
| 18 |
+
# --- Logo ---
|
| 19 |
+
st.logo("logo.png", icon_image="logo.png")
|
| 20 |
+
|
| 21 |
+
# 导入重构后的模块
|
| 22 |
+
try:
|
| 23 |
+
from utils import DATA_ROOT_PATH, AppMode
|
| 24 |
+
from data_models import Study, Trial # Study, Trial will be used
|
| 25 |
+
from data_loader import discover_studies_cached, ensure_data_directory_exists
|
| 26 |
+
from theme_selector import render_theme_selector # 新增:导入主题选择器
|
| 27 |
+
except ImportError as e:
|
| 28 |
+
st.error(
|
| 29 |
+
f"导入模块失败,请确保 utils.py, data_models.py, data_loader.py, theme_selector.py 文件存在于正确的位置: {e}"
|
| 30 |
+
)
|
| 31 |
+
st.stop()
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# --- 应用状态管理 ---
|
| 35 |
+
if "selected_study_name" not in st.session_state:
|
| 36 |
+
st.session_state.selected_study_name = None
|
| 37 |
+
if "selected_trial_name" not in st.session_state:
|
| 38 |
+
st.session_state.selected_trial_name = None
|
| 39 |
+
# if "studies_data" not in st.session_state: # Not directly used, discover_studies_cached returns objects
|
| 40 |
+
# st.session_state.studies_data = {}
|
| 41 |
+
if "app_mode" not in st.session_state:
|
| 42 |
+
st.session_state.app_mode = AppMode.VIEWING
|
| 43 |
+
|
| 44 |
+
# 新增: 用于跨图表共享选中的 global_step
|
| 45 |
+
if "shared_selected_global_step" not in st.session_state:
|
| 46 |
+
st.session_state.shared_selected_global_step = None
|
| 47 |
+
|
| 48 |
+
# 新增: 自动播放相关状态
|
| 49 |
+
if "is_auto_playing" not in st.session_state:
|
| 50 |
+
st.session_state.is_auto_playing = False
|
| 51 |
+
if "auto_play_speed" not in st.session_state:
|
| 52 |
+
st.session_state.auto_play_speed = 1.0
|
| 53 |
+
if "auto_play_needs_rerun" not in st.session_state:
|
| 54 |
+
st.session_state.auto_play_needs_rerun = False
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
# --- UI Rendering ---
|
| 58 |
+
|
| 59 |
+
# --- Header ---
|
| 60 |
+
header_cols = st.columns([2, 3, 1.5, 0.5, 0.5, 0.5, 1]) # 新增一列用于主题选择器
|
| 61 |
+
with header_cols[0]:
|
| 62 |
+
st.markdown("## 柳暗花明")
|
| 63 |
+
st.caption("flowillower")
|
| 64 |
+
|
| 65 |
+
ensure_data_directory_exists(DATA_ROOT_PATH)
|
| 66 |
+
all_study_objects = discover_studies_cached(DATA_ROOT_PATH)
|
| 67 |
+
study_names = list(all_study_objects.keys())
|
| 68 |
+
|
| 69 |
+
if not study_names:
|
| 70 |
+
st.warning(
|
| 71 |
+
f"在 {DATA_ROOT_PATH} 未找到任何 Study。请确保您的数据结构正确或使用 flowillower API 开始记录实验。"
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
if study_names:
|
| 75 |
+
with header_cols[1]:
|
| 76 |
+
if st.session_state.selected_study_name not in study_names:
|
| 77 |
+
st.session_state.selected_study_name = (
|
| 78 |
+
study_names[0] if study_names else None
|
| 79 |
+
)
|
| 80 |
+
|
| 81 |
+
selected_study_name_from_ui = st.selectbox(
|
| 82 |
+
"选择 Study (Select Study)",
|
| 83 |
+
study_names,
|
| 84 |
+
index=study_names.index(st.session_state.selected_study_name)
|
| 85 |
+
if st.session_state.selected_study_name in study_names
|
| 86 |
+
else 0,
|
| 87 |
+
label_visibility="collapsed",
|
| 88 |
+
key="study_selector_main_ui",
|
| 89 |
+
)
|
| 90 |
+
if selected_study_name_from_ui != st.session_state.selected_study_name:
|
| 91 |
+
st.session_state.selected_study_name = selected_study_name_from_ui
|
| 92 |
+
st.session_state.selected_trial_name = None
|
| 93 |
+
st.session_state.shared_selected_global_step = None # Study 变化时清除高亮
|
| 94 |
+
st.rerun()
|
| 95 |
+
|
| 96 |
+
with header_cols[2]:
|
| 97 |
+
if st.session_state.selected_study_name:
|
| 98 |
+
st.write(f"当前 Study: **{st.session_state.selected_study_name}**")
|
| 99 |
+
else:
|
| 100 |
+
with header_cols[1]:
|
| 101 |
+
st.info("没有可用的 Study。")
|
| 102 |
+
|
| 103 |
+
with header_cols[3]:
|
| 104 |
+
st.button("➕", help="添加 (Add)", disabled=True)
|
| 105 |
+
with header_cols[4]:
|
| 106 |
+
st.button("⚙️", help="设置 (Settings)", disabled=True)
|
| 107 |
+
with header_cols[5]:
|
| 108 |
+
st.button("👤", help="用户 (User)", disabled=True)
|
| 109 |
+
with header_cols[6]: # 新增:主题选择器列
|
| 110 |
+
with st.container():
|
| 111 |
+
# st.markdown("**主题**")
|
| 112 |
+
render_theme_selector()
|
| 113 |
+
st.markdown("---")
|
| 114 |
+
|
| 115 |
+
# --- Sidebar ---
|
| 116 |
+
current_study: Study | None = None
|
| 117 |
+
if (
|
| 118 |
+
st.session_state.selected_study_name
|
| 119 |
+
and st.session_state.selected_study_name in all_study_objects
|
| 120 |
+
):
|
| 121 |
+
current_study = all_study_objects[st.session_state.selected_study_name]
|
| 122 |
+
if not current_study.trials:
|
| 123 |
+
current_study.discover_trials_cached()
|
| 124 |
+
|
| 125 |
+
trial_names = list(current_study.trials.keys()) if current_study else []
|
| 126 |
+
|
| 127 |
+
with st.sidebar:
|
| 128 |
+
st.markdown("### Study")
|
| 129 |
+
if current_study:
|
| 130 |
+
st.markdown(f"##### {current_study.name}")
|
| 131 |
+
if st.button("刷新 Study 数据 (Refresh Study Data)", use_container_width=True):
|
| 132 |
+
current_study.clear_cache()
|
| 133 |
+
st.rerun()
|
| 134 |
+
if st.button("概览 (Overview)", use_container_width=True, disabled=True):
|
| 135 |
+
st.toast("功能待实现")
|
| 136 |
+
if st.button(
|
| 137 |
+
"图表对比视图 (Chart Comparison View)",
|
| 138 |
+
use_container_width=True,
|
| 139 |
+
disabled=True,
|
| 140 |
+
):
|
| 141 |
+
st.toast("功能待实现")
|
| 142 |
+
else:
|
| 143 |
+
st.markdown("未选择 Study")
|
| 144 |
+
|
| 145 |
+
st.markdown("---")
|
| 146 |
+
st.markdown("### Trial")
|
| 147 |
+
if current_study and trial_names:
|
| 148 |
+
if st.session_state.selected_trial_name not in trial_names:
|
| 149 |
+
st.session_state.selected_trial_name = (
|
| 150 |
+
trial_names[0] if trial_names else None
|
| 151 |
+
)
|
| 152 |
+
|
| 153 |
+
selected_trial_name_from_ui = st.radio(
|
| 154 |
+
"选择 Trial (Select Trial)",
|
| 155 |
+
trial_names,
|
| 156 |
+
index=trial_names.index(st.session_state.selected_trial_name)
|
| 157 |
+
if st.session_state.selected_trial_name in trial_names
|
| 158 |
+
else 0,
|
| 159 |
+
label_visibility="collapsed",
|
| 160 |
+
key="trial_selector_sidebar_ui",
|
| 161 |
+
)
|
| 162 |
+
if selected_trial_name_from_ui != st.session_state.selected_trial_name:
|
| 163 |
+
st.session_state.selected_trial_name = selected_trial_name_from_ui
|
| 164 |
+
st.session_state.shared_selected_global_step = None # Trial 变化时清除高亮
|
| 165 |
+
st.rerun()
|
| 166 |
+
if st.session_state.selected_trial_name:
|
| 167 |
+
st.markdown(f"当前选择: **{st.session_state.selected_trial_name}**")
|
| 168 |
+
elif current_study:
|
| 169 |
+
st.info(f"Study '{current_study.name}' 中没有 Trial。")
|
| 170 |
+
else:
|
| 171 |
+
st.info("请先选择一个 Study。")
|
| 172 |
+
st.markdown("---")
|
| 173 |
+
if st.button("⚙️ App 设置 (App Settings)", use_container_width=True, disabled=True):
|
| 174 |
+
st.toast("功能待实现")
|
| 175 |
+
|
| 176 |
+
# --- Main Content Area ---
|
| 177 |
+
current_trial: Trial | None = None
|
| 178 |
+
if (
|
| 179 |
+
current_study
|
| 180 |
+
and st.session_state.selected_trial_name
|
| 181 |
+
and st.session_state.selected_trial_name in current_study.trials
|
| 182 |
+
):
|
| 183 |
+
current_trial = current_study.trials[st.session_state.selected_trial_name]
|
| 184 |
+
current_trial.load_input_variables_cached()
|
| 185 |
+
current_trial.load_metrics_cached()
|
| 186 |
+
|
| 187 |
+
if current_study and current_trial:
|
| 188 |
+
main_title_cols = st.columns([3, 1, 0.5])
|
| 189 |
+
with main_title_cols[0]:
|
| 190 |
+
st.markdown(f"## {current_trial.name}")
|
| 191 |
+
st.caption(f"属于 Study: {current_study.name}")
|
| 192 |
+
with main_title_cols[1]:
|
| 193 |
+
if st.button("刷新 Trial 数据 (Refresh Trial Data)", type="secondary"):
|
| 194 |
+
current_trial.clear_cache()
|
| 195 |
+
st.rerun()
|
| 196 |
+
with main_title_cols[2]:
|
| 197 |
+
st.button("...", help="更多选项 (More Options)", disabled=True)
|
| 198 |
+
|
| 199 |
+
# 添加全局步骤控制器
|
| 200 |
+
if current_trial.metrics_data:
|
| 201 |
+
st.markdown("### 全局步骤控制 (Global Step Control)")
|
| 202 |
+
|
| 203 |
+
# 获取所有指标的全局步骤范围
|
| 204 |
+
all_global_steps = set()
|
| 205 |
+
for metric_name in current_trial.metrics_data.keys():
|
| 206 |
+
df_metric = current_trial.get_metric_dataframe(metric_name)
|
| 207 |
+
if (
|
| 208 |
+
df_metric is not None
|
| 209 |
+
and not df_metric.empty
|
| 210 |
+
and "global_step" in df_metric.columns
|
| 211 |
+
):
|
| 212 |
+
all_global_steps.update(df_metric["global_step"].tolist())
|
| 213 |
+
|
| 214 |
+
if all_global_steps:
|
| 215 |
+
all_global_steps = sorted(list(all_global_steps))
|
| 216 |
+
min_step, max_step = min(all_global_steps), max(all_global_steps)
|
| 217 |
+
|
| 218 |
+
# 控制器布局
|
| 219 |
+
control_cols = st.columns([3, 1, 1, 1])
|
| 220 |
+
|
| 221 |
+
with control_cols[0]:
|
| 222 |
+
# 滑动条
|
| 223 |
+
if st.session_state.shared_selected_global_step is None:
|
| 224 |
+
# 默认选择最后一个step
|
| 225 |
+
st.session_state.shared_selected_global_step = max_step
|
| 226 |
+
|
| 227 |
+
# 确保当前选中的步骤在有效范围内
|
| 228 |
+
if st.session_state.shared_selected_global_step not in all_global_steps:
|
| 229 |
+
# 找到最接近的有效步骤
|
| 230 |
+
closest_step = min(
|
| 231 |
+
all_global_steps,
|
| 232 |
+
key=lambda x: abs(
|
| 233 |
+
x - st.session_state.shared_selected_global_step
|
| 234 |
+
),
|
| 235 |
+
)
|
| 236 |
+
st.session_state.shared_selected_global_step = closest_step
|
| 237 |
+
|
| 238 |
+
selected_step = st.select_slider(
|
| 239 |
+
"选择全局步骤",
|
| 240 |
+
options=all_global_steps,
|
| 241 |
+
value=st.session_state.shared_selected_global_step,
|
| 242 |
+
format_func=lambda x: f"Step {x}",
|
| 243 |
+
key="global_step_slider",
|
| 244 |
+
)
|
| 245 |
+
|
| 246 |
+
if selected_step != st.session_state.shared_selected_global_step:
|
| 247 |
+
st.session_state.shared_selected_global_step = selected_step
|
| 248 |
+
st.rerun()
|
| 249 |
+
|
| 250 |
+
with control_cols[1]:
|
| 251 |
+
# 播放/暂停按钮
|
| 252 |
+
if st.session_state.is_auto_playing:
|
| 253 |
+
if st.button("⏸️ 暂停", type="primary", use_container_width=True):
|
| 254 |
+
st.session_state.is_auto_playing = False
|
| 255 |
+
st.rerun()
|
| 256 |
+
else:
|
| 257 |
+
if st.button("▶️ 播放", type="primary", use_container_width=True):
|
| 258 |
+
st.session_state.is_auto_playing = True
|
| 259 |
+
st.rerun()
|
| 260 |
+
|
| 261 |
+
with control_cols[2]:
|
| 262 |
+
# 速度控制
|
| 263 |
+
speed = st.selectbox(
|
| 264 |
+
"播放速度",
|
| 265 |
+
options=[0.5, 1.0, 2.0, 4.0],
|
| 266 |
+
index=[0.5, 1.0, 2.0, 4.0].index(st.session_state.auto_play_speed),
|
| 267 |
+
format_func=lambda x: f"{x}x",
|
| 268 |
+
key="speed_selector",
|
| 269 |
+
)
|
| 270 |
+
if speed != st.session_state.auto_play_speed:
|
| 271 |
+
st.session_state.auto_play_speed = speed
|
| 272 |
+
|
| 273 |
+
with control_cols[3]:
|
| 274 |
+
# 重置按钮
|
| 275 |
+
if st.button("🔄 重置", use_container_width=True):
|
| 276 |
+
st.session_state.shared_selected_global_step = min_step
|
| 277 |
+
st.session_state.is_auto_playing = False
|
| 278 |
+
st.rerun()
|
| 279 |
+
|
| 280 |
+
# 自动播放逻辑 - 设置标志但不立即rerun
|
| 281 |
+
if st.session_state.is_auto_playing:
|
| 282 |
+
current_index = all_global_steps.index(
|
| 283 |
+
st.session_state.shared_selected_global_step
|
| 284 |
+
)
|
| 285 |
+
if current_index < len(all_global_steps) - 1:
|
| 286 |
+
# 等待指定时间后移动到下一步
|
| 287 |
+
time.sleep(1.0 / st.session_state.auto_play_speed)
|
| 288 |
+
st.session_state.shared_selected_global_step = all_global_steps[
|
| 289 |
+
current_index + 1
|
| 290 |
+
]
|
| 291 |
+
st.session_state.auto_play_needs_rerun = True
|
| 292 |
+
else:
|
| 293 |
+
# 到达末尾,停止播放
|
| 294 |
+
st.session_state.is_auto_playing = False
|
| 295 |
+
st.session_state.auto_play_needs_rerun = True
|
| 296 |
+
|
| 297 |
+
# 显示当前步骤信息
|
| 298 |
+
st.info(
|
| 299 |
+
f"当前选中步骤: **{st.session_state.shared_selected_global_step}** / {max_step}"
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
st.markdown("---")
|
| 303 |
+
|
| 304 |
+
tab_titles = [
|
| 305 |
+
"图表 (Charts)",
|
| 306 |
+
"参数 (Parameters)",
|
| 307 |
+
"系统 (System)",
|
| 308 |
+
"日志 (Logs)",
|
| 309 |
+
"环境 (Environment)",
|
| 310 |
+
]
|
| 311 |
+
tab_charts, tab_params, tab_system, tab_logs, tab_env = st.tabs(tab_titles)
|
| 312 |
+
|
| 313 |
+
with tab_charts:
|
| 314 |
+
st.header("指标图表 (Metrics Charts)")
|
| 315 |
+
st.markdown("---")
|
| 316 |
+
|
| 317 |
+
if not current_trial.metrics_data:
|
| 318 |
+
st.info("当前 Trial 没有可显示的指标数据。")
|
| 319 |
+
else:
|
| 320 |
+
num_metrics = len(current_trial.metrics_data)
|
| 321 |
+
cols_per_row = st.slider(
|
| 322 |
+
"每行图表数量 (Charts per row)",
|
| 323 |
+
1,
|
| 324 |
+
4,
|
| 325 |
+
min(2, num_metrics) if num_metrics > 0 else 1,
|
| 326 |
+
key=f"cols_slider_{current_study.name}_{current_trial.name}",
|
| 327 |
+
)
|
| 328 |
+
metric_names = sorted(list(current_trial.metrics_data.keys()))
|
| 329 |
+
|
| 330 |
+
for i in range(0, num_metrics, cols_per_row):
|
| 331 |
+
metric_chunk = metric_names[i : i + cols_per_row]
|
| 332 |
+
chart_cols = st.columns(cols_per_row)
|
| 333 |
+
for j, metric_name in enumerate(metric_chunk):
|
| 334 |
+
with chart_cols[j]:
|
| 335 |
+
df_metric = current_trial.get_metric_dataframe(metric_name)
|
| 336 |
+
if df_metric is None or df_metric.empty:
|
| 337 |
+
st.warning(f"指标 '{metric_name}' 数据不完整或缺失。")
|
| 338 |
+
continue
|
| 339 |
+
|
| 340 |
+
with st.container(border=True):
|
| 341 |
+
st.subheader(metric_name)
|
| 342 |
+
|
| 343 |
+
# 添加metric组件 - 显示当前值和增量
|
| 344 |
+
try:
|
| 345 |
+
current_step = (
|
| 346 |
+
st.session_state.shared_selected_global_step
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
# 获取所有可能的track
|
| 350 |
+
all_tracks = (
|
| 351 |
+
df_metric["track"].unique()
|
| 352 |
+
if "track" in df_metric.columns
|
| 353 |
+
else [None]
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
# 为每个track创建metric组件
|
| 357 |
+
if len(all_tracks) > 1:
|
| 358 |
+
metric_cols = st.columns(len(all_tracks))
|
| 359 |
+
else:
|
| 360 |
+
metric_cols = [st] # 使用整个容器
|
| 361 |
+
|
| 362 |
+
for idx, track in enumerate(all_tracks):
|
| 363 |
+
# 查找当前步骤的数据
|
| 364 |
+
if track is not None:
|
| 365 |
+
current_step_data = df_metric[
|
| 366 |
+
(df_metric["global_step"] == current_step)
|
| 367 |
+
& (df_metric["track"] == track)
|
| 368 |
+
]
|
| 369 |
+
else:
|
| 370 |
+
current_step_data = df_metric[
|
| 371 |
+
df_metric["global_step"] == current_step
|
| 372 |
+
]
|
| 373 |
+
|
| 374 |
+
current_value = None
|
| 375 |
+
delta_value = None
|
| 376 |
+
|
| 377 |
+
# 如果当前步骤没有该track的数据,向前查找最近的步骤
|
| 378 |
+
if current_step_data.empty:
|
| 379 |
+
# 向前查找最近的有该track数据的步骤
|
| 380 |
+
current_index = all_global_steps.index(
|
| 381 |
+
current_step
|
| 382 |
+
)
|
| 383 |
+
for search_idx in range(
|
| 384 |
+
current_index - 1, -1, -1
|
| 385 |
+
):
|
| 386 |
+
search_step = all_global_steps[search_idx]
|
| 387 |
+
if track is not None:
|
| 388 |
+
search_data = df_metric[
|
| 389 |
+
(
|
| 390 |
+
df_metric["global_step"]
|
| 391 |
+
== search_step
|
| 392 |
+
)
|
| 393 |
+
& (df_metric["track"] == track)
|
| 394 |
+
]
|
| 395 |
+
else:
|
| 396 |
+
search_data = df_metric[
|
| 397 |
+
df_metric["global_step"]
|
| 398 |
+
== search_step
|
| 399 |
+
]
|
| 400 |
+
|
| 401 |
+
if not search_data.empty:
|
| 402 |
+
current_value = search_data[
|
| 403 |
+
"value"
|
| 404 |
+
].iloc[0]
|
| 405 |
+
current_step_found = search_step
|
| 406 |
+
break
|
| 407 |
+
else:
|
| 408 |
+
current_value = current_step_data["value"].iloc[
|
| 409 |
+
0
|
| 410 |
+
]
|
| 411 |
+
current_step_found = current_step
|
| 412 |
+
|
| 413 |
+
# 计算增量:查找比当前找到的步骤更早的数据
|
| 414 |
+
if current_value is not None:
|
| 415 |
+
current_found_index = all_global_steps.index(
|
| 416 |
+
current_step_found
|
| 417 |
+
)
|
| 418 |
+
for prev_idx in range(
|
| 419 |
+
current_found_index - 1, -1, -1
|
| 420 |
+
):
|
| 421 |
+
prev_step = all_global_steps[prev_idx]
|
| 422 |
+
if track is not None:
|
| 423 |
+
prev_step_data = df_metric[
|
| 424 |
+
(
|
| 425 |
+
df_metric["global_step"]
|
| 426 |
+
== prev_step
|
| 427 |
+
)
|
| 428 |
+
& (df_metric["track"] == track)
|
| 429 |
+
]
|
| 430 |
+
else:
|
| 431 |
+
prev_step_data = df_metric[
|
| 432 |
+
df_metric["global_step"]
|
| 433 |
+
== prev_step
|
| 434 |
+
]
|
| 435 |
+
|
| 436 |
+
if not prev_step_data.empty:
|
| 437 |
+
prev_value = prev_step_data[
|
| 438 |
+
"value"
|
| 439 |
+
].iloc[0]
|
| 440 |
+
delta_value = current_value - prev_value
|
| 441 |
+
break
|
| 442 |
+
|
| 443 |
+
# 显示metric组件
|
| 444 |
+
with (
|
| 445 |
+
metric_cols[idx]
|
| 446 |
+
if len(all_tracks) > 1
|
| 447 |
+
else metric_cols[0]
|
| 448 |
+
):
|
| 449 |
+
if current_value is not None:
|
| 450 |
+
# 确定label
|
| 451 |
+
if track is not None:
|
| 452 |
+
if current_step_found != current_step:
|
| 453 |
+
label = f"{track} (Step {current_step_found})"
|
| 454 |
+
else:
|
| 455 |
+
label = f"{track}"
|
| 456 |
+
else:
|
| 457 |
+
if current_step_found != current_step:
|
| 458 |
+
label = f"当前值 (Step {current_step_found})"
|
| 459 |
+
else:
|
| 460 |
+
label = (
|
| 461 |
+
f"当前值 (Step {current_step})"
|
| 462 |
+
)
|
| 463 |
+
|
| 464 |
+
st.metric(
|
| 465 |
+
label=label,
|
| 466 |
+
value=f"{current_value:.4f}",
|
| 467 |
+
delta=f"{delta_value:.4f}"
|
| 468 |
+
if delta_value is not None
|
| 469 |
+
else None,
|
| 470 |
+
)
|
| 471 |
+
else:
|
| 472 |
+
# 没有找到任何数据
|
| 473 |
+
track_label = (
|
| 474 |
+
track if track is not None else "数据"
|
| 475 |
+
)
|
| 476 |
+
st.metric(
|
| 477 |
+
label=f"{track_label}",
|
| 478 |
+
value="无数据",
|
| 479 |
+
delta=None,
|
| 480 |
+
)
|
| 481 |
+
|
| 482 |
+
except Exception as e:
|
| 483 |
+
st.warning(f"计算指标值时出错: {e}")
|
| 484 |
+
|
| 485 |
+
try:
|
| 486 |
+
# 创建 Plotly 图表
|
| 487 |
+
fig = go.Figure()
|
| 488 |
+
|
| 489 |
+
# 按track分组绘制线条
|
| 490 |
+
if "track" in df_metric.columns:
|
| 491 |
+
tracks = df_metric["track"].unique()
|
| 492 |
+
colors = px.colors.qualitative.Set1[: len(tracks)]
|
| 493 |
+
|
| 494 |
+
for k, track in enumerate(tracks):
|
| 495 |
+
track_data = df_metric[
|
| 496 |
+
df_metric["track"] == track
|
| 497 |
+
]
|
| 498 |
+
fig.add_trace(
|
| 499 |
+
go.Scatter(
|
| 500 |
+
x=track_data["global_step"],
|
| 501 |
+
y=track_data["value"],
|
| 502 |
+
mode="lines+markers",
|
| 503 |
+
name=track,
|
| 504 |
+
line=dict(
|
| 505 |
+
color=colors[k % len(colors)]
|
| 506 |
+
),
|
| 507 |
+
marker=dict(
|
| 508 |
+
size=6,
|
| 509 |
+
color=colors[k % len(colors)],
|
| 510 |
+
line=dict(width=1, color="white"),
|
| 511 |
+
),
|
| 512 |
+
customdata=track_data[
|
| 513 |
+
["global_step", "value", "track"]
|
| 514 |
+
],
|
| 515 |
+
hovertemplate="<b>%{fullData.name}</b><br>"
|
| 516 |
+
+ "Global Step: %{x}<br>"
|
| 517 |
+
+ "Value: %{y}<br>"
|
| 518 |
+
+ "<extra></extra>",
|
| 519 |
+
)
|
| 520 |
+
)
|
| 521 |
+
else:
|
| 522 |
+
# 如果没有track列,绘制单条线
|
| 523 |
+
fig.add_trace(
|
| 524 |
+
go.Scatter(
|
| 525 |
+
x=df_metric["global_step"],
|
| 526 |
+
y=df_metric["value"],
|
| 527 |
+
mode="lines+markers",
|
| 528 |
+
name=metric_name,
|
| 529 |
+
marker=dict(
|
| 530 |
+
size=6,
|
| 531 |
+
line=dict(width=1, color="white"),
|
| 532 |
+
),
|
| 533 |
+
customdata=df_metric[
|
| 534 |
+
["global_step", "value"]
|
| 535 |
+
],
|
| 536 |
+
hovertemplate="Global Step: %{x}<br>"
|
| 537 |
+
+ "Value: %{y}<br>"
|
| 538 |
+
+ "<extra></extra>",
|
| 539 |
+
)
|
| 540 |
+
)
|
| 541 |
+
|
| 542 |
+
# 如果有共享的选中步骤,添加高亮线
|
| 543 |
+
if (
|
| 544 |
+
st.session_state.shared_selected_global_step
|
| 545 |
+
is not None
|
| 546 |
+
):
|
| 547 |
+
fig.add_vline(
|
| 548 |
+
x=st.session_state.shared_selected_global_step,
|
| 549 |
+
line_width=2,
|
| 550 |
+
line_dash="solid",
|
| 551 |
+
line_color="firebrick",
|
| 552 |
+
opacity=0.9,
|
| 553 |
+
)
|
| 554 |
+
|
| 555 |
+
# 设置图表布局
|
| 556 |
+
fig.update_layout(
|
| 557 |
+
title=None,
|
| 558 |
+
xaxis_title="全局步骤 (Global Step)",
|
| 559 |
+
yaxis_title=metric_name,
|
| 560 |
+
height=400,
|
| 561 |
+
margin=dict(l=0, r=0, t=0, b=0),
|
| 562 |
+
showlegend=True
|
| 563 |
+
if "track" in df_metric.columns
|
| 564 |
+
and len(df_metric["track"].unique()) > 1
|
| 565 |
+
else False,
|
| 566 |
+
hovermode="closest",
|
| 567 |
+
)
|
| 568 |
+
|
| 569 |
+
# 显示图表并处理点击事件
|
| 570 |
+
chart_key = f"chart_metric_{current_study.name}_{current_trial.name}_{metric_name}"
|
| 571 |
+
clicked_points = st.plotly_chart(
|
| 572 |
+
fig,
|
| 573 |
+
use_container_width=True,
|
| 574 |
+
key=chart_key,
|
| 575 |
+
on_select="rerun",
|
| 576 |
+
)
|
| 577 |
+
|
| 578 |
+
# 处理点击事件
|
| 579 |
+
if clicked_points and "selection" in clicked_points:
|
| 580 |
+
selection = clicked_points["selection"]
|
| 581 |
+
if (
|
| 582 |
+
"points" in selection
|
| 583 |
+
and len(selection["points"]) > 0
|
| 584 |
+
):
|
| 585 |
+
# 获取第一个点击点的 x 坐标 (global_step)
|
| 586 |
+
clicked_x = selection["points"][0]["x"]
|
| 587 |
+
if clicked_x is not None:
|
| 588 |
+
new_step = int(clicked_x)
|
| 589 |
+
if (
|
| 590 |
+
st.session_state.get(
|
| 591 |
+
"shared_selected_global_step"
|
| 592 |
+
)
|
| 593 |
+
!= new_step
|
| 594 |
+
):
|
| 595 |
+
st.session_state.shared_selected_global_step = new_step
|
| 596 |
+
# 点击图表时停止自动播放
|
| 597 |
+
st.session_state.is_auto_playing = False
|
| 598 |
+
st.rerun()
|
| 599 |
+
|
| 600 |
+
except Exception as e:
|
| 601 |
+
st.error(f"为指标 '{metric_name}' 生成图表时出错: {e}")
|
| 602 |
+
st.dataframe(df_metric)
|
| 603 |
+
# raise e
|
| 604 |
+
|
| 605 |
+
with tab_params:
|
| 606 |
+
st.header("输入参数 (Input Parameters)")
|
| 607 |
+
if current_trial.input_variables:
|
| 608 |
+
st.json(current_trial.input_variables)
|
| 609 |
+
else:
|
| 610 |
+
st.info("未找到 `input_variables.toml` 或文件为空。")
|
| 611 |
+
|
| 612 |
+
for tab_content, name in [
|
| 613 |
+
(tab_system, "系统监控"),
|
| 614 |
+
(tab_logs, "日志"),
|
| 615 |
+
(tab_env, "环境"),
|
| 616 |
+
]:
|
| 617 |
+
with tab_content:
|
| 618 |
+
st.header(name)
|
| 619 |
+
st.info("此功能待您的 `flowillower` API 提供相关数据后实现。")
|
| 620 |
+
|
| 621 |
+
elif not st.session_state.selected_study_name:
|
| 622 |
+
st.info("👈 请从顶部选择一个 Study 开始。")
|
| 623 |
+
elif not st.session_state.selected_trial_name:
|
| 624 |
+
st.info("👈 请从侧边栏选择一个 Trial。")
|
| 625 |
+
else:
|
| 626 |
+
st.info("请选择 Study 和 Trial 以查看数据。")
|
| 627 |
+
|
| 628 |
+
st.markdown("---")
|
| 629 |
+
st.caption("柳暗花明 (flowillower) - 数据可视化App")
|
| 630 |
+
|
| 631 |
+
# 在页面最后处理自动播放的rerun
|
| 632 |
+
if st.session_state.get("auto_play_needs_rerun", False):
|
| 633 |
+
st.session_state.auto_play_needs_rerun = False
|
| 634 |
+
st.rerun()
|
src copy/theme_selector.py
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import toml
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
import os
|
| 5 |
+
import time
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
class ThemeSelector:
|
| 9 |
+
def __init__(
|
| 10 |
+
self, themes_dir=".streamlit/themes", config_path=".streamlit/config.toml"
|
| 11 |
+
):
|
| 12 |
+
self.themes_dir = Path(themes_dir)
|
| 13 |
+
self.config_path = Path(config_path)
|
| 14 |
+
self.themes = {}
|
| 15 |
+
self.load_themes()
|
| 16 |
+
|
| 17 |
+
def load_themes(self):
|
| 18 |
+
"""加载所有主题文件"""
|
| 19 |
+
self.themes = {}
|
| 20 |
+
if not self.themes_dir.exists():
|
| 21 |
+
return
|
| 22 |
+
|
| 23 |
+
for theme_file in self.themes_dir.glob("*.toml"):
|
| 24 |
+
try:
|
| 25 |
+
theme_data = toml.load(theme_file)
|
| 26 |
+
|
| 27 |
+
# 从根级别获取theme_name和theme_poem
|
| 28 |
+
theme_name = theme_data.get("theme_name", theme_file.stem)
|
| 29 |
+
theme_poem = theme_data.get("theme_poem", "")
|
| 30 |
+
theme_config = theme_data.get("theme", {})
|
| 31 |
+
|
| 32 |
+
self.themes[theme_name] = {
|
| 33 |
+
"file": theme_file,
|
| 34 |
+
"name": theme_name,
|
| 35 |
+
"poem": theme_poem,
|
| 36 |
+
"config": theme_config,
|
| 37 |
+
}
|
| 38 |
+
except Exception as e:
|
| 39 |
+
st.warning(f"读取主题文件 {theme_file} 失败: {e}")
|
| 40 |
+
|
| 41 |
+
def get_current_theme(self):
|
| 42 |
+
"""获取当前主题名称"""
|
| 43 |
+
if not self.config_path.exists():
|
| 44 |
+
return None
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
# config = toml.load(self.config_path)
|
| 48 |
+
# # 从根级别读取theme_name
|
| 49 |
+
# current_theme_name = config.get("theme") or {}
|
| 50 |
+
# current_theme_name = current_theme_name.get("theme_name")
|
| 51 |
+
# return current_theme_name
|
| 52 |
+
theme_toml = self.config_path.parent / "theme.toml"
|
| 53 |
+
theme = toml.load(theme_toml)
|
| 54 |
+
return theme.get("theme_name")
|
| 55 |
+
|
| 56 |
+
except Exception:
|
| 57 |
+
return None
|
| 58 |
+
|
| 59 |
+
def apply_theme(self, theme_name):
|
| 60 |
+
"""应用选定的主题"""
|
| 61 |
+
if theme_name not in self.themes:
|
| 62 |
+
st.error(f"主题 '{theme_name}' 不存在")
|
| 63 |
+
return False
|
| 64 |
+
|
| 65 |
+
try:
|
| 66 |
+
# 确保配置目录存在
|
| 67 |
+
self.config_path.parent.mkdir(parents=True, exist_ok=True)
|
| 68 |
+
|
| 69 |
+
# 读取现有配置或创建新配置
|
| 70 |
+
config = {}
|
| 71 |
+
if self.config_path.exists():
|
| 72 |
+
try:
|
| 73 |
+
config = toml.load(self.config_path)
|
| 74 |
+
except Exception:
|
| 75 |
+
config = {}
|
| 76 |
+
|
| 77 |
+
# 添加根级别的theme_name和theme_poem
|
| 78 |
+
# config["theme_name"] = self.themes[theme_name]["name"]
|
| 79 |
+
# config["theme_poem"] = self.themes[theme_name]["poem"]
|
| 80 |
+
|
| 81 |
+
# 更新主题配置
|
| 82 |
+
theme_config = self.themes[theme_name]["config"].copy()
|
| 83 |
+
# theme_config["theme_name"] = self.themes[theme_name]["name"]
|
| 84 |
+
# theme_config["theme_poem"] = self.themes[theme_name]["poem"]
|
| 85 |
+
config["theme"] |= theme_config
|
| 86 |
+
|
| 87 |
+
# 写入配置文件
|
| 88 |
+
with open(self.config_path, "w", encoding="utf-8") as f:
|
| 89 |
+
toml.dump(config, f)
|
| 90 |
+
|
| 91 |
+
theme_toml = self.config_path.parent / "theme.toml"
|
| 92 |
+
with open(theme_toml, "w", encoding="utf-8") as f:
|
| 93 |
+
toml.dump(
|
| 94 |
+
dict(
|
| 95 |
+
theme_name=self.themes[theme_name]["name"],
|
| 96 |
+
theme_poem=self.themes[theme_name]["poem"],
|
| 97 |
+
),
|
| 98 |
+
f,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
return True
|
| 102 |
+
|
| 103 |
+
except Exception as e:
|
| 104 |
+
st.error(f"应用主题失败: {e}")
|
| 105 |
+
return False
|
| 106 |
+
|
| 107 |
+
def render_theme_selector(self):
|
| 108 |
+
"""渲染主题选择器UI"""
|
| 109 |
+
if not self.themes:
|
| 110 |
+
st.warning("未找到可用主题")
|
| 111 |
+
return
|
| 112 |
+
|
| 113 |
+
theme_names = list(self.themes.keys())
|
| 114 |
+
current_theme = self.get_current_theme()
|
| 115 |
+
|
| 116 |
+
# 确定当前选中的索引
|
| 117 |
+
current_index = 0
|
| 118 |
+
if current_theme and current_theme in theme_names:
|
| 119 |
+
current_index = theme_names.index(current_theme)
|
| 120 |
+
|
| 121 |
+
# 主题选择下拉菜单
|
| 122 |
+
selected_theme = st.selectbox(
|
| 123 |
+
"选择主题",
|
| 124 |
+
options=theme_names,
|
| 125 |
+
index=current_index,
|
| 126 |
+
format_func=lambda x: self.themes[x]["name"],
|
| 127 |
+
key="theme_selector_widget",
|
| 128 |
+
label_visibility="collapsed",
|
| 129 |
+
)
|
| 130 |
+
|
| 131 |
+
# 如果选择了新主题
|
| 132 |
+
if selected_theme != current_theme:
|
| 133 |
+
if self.apply_theme(selected_theme):
|
| 134 |
+
# 显示主题诗句
|
| 135 |
+
theme_poem = self.themes[selected_theme]["poem"]
|
| 136 |
+
if theme_poem:
|
| 137 |
+
st.toast(f"✨ {theme_poem}", icon="🎨")
|
| 138 |
+
else:
|
| 139 |
+
st.toast(f"已切换到主题: {selected_theme}", icon="🎨")
|
| 140 |
+
|
| 141 |
+
time.sleep(3)
|
| 142 |
+
# 延迟重新运行以应用主题
|
| 143 |
+
st.rerun()
|
| 144 |
+
|
| 145 |
+
return selected_theme
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
# 全局主题选择器实例
|
| 149 |
+
_theme_selector = None
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def get_theme_selector():
|
| 153 |
+
"""获取全局主题选择器实例"""
|
| 154 |
+
global _theme_selector
|
| 155 |
+
if _theme_selector is None:
|
| 156 |
+
_theme_selector = ThemeSelector()
|
| 157 |
+
return _theme_selector
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
def render_theme_selector():
|
| 161 |
+
"""便捷函数:渲染主题选择器"""
|
| 162 |
+
return get_theme_selector().render_theme_selector()
|
{src → src copy}/utils.py
RENAMED
|
File without changes
|
src/.streamlit/config.toml
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[theme]
|
| 2 |
+
base = "light"
|
| 3 |
+
baseFontSize = 15
|
| 4 |
+
primaryColor = "#FF5F7E"
|
| 5 |
+
backgroundColor = "#F9FAFB"
|
| 6 |
+
secondaryBackgroundColor = "#F0F4F8"
|
| 7 |
+
textColor = "#1F2937"
|
| 8 |
+
linkColor = "#2563EB"
|
| 9 |
+
borderColor = "#D1D5DB"
|
| 10 |
+
showWidgetBorder = false
|
| 11 |
+
baseRadius = "0.3rem"
|
| 12 |
+
font = "Poppins"
|
| 13 |
+
|
| 14 |
+
[theme.sidebar]
|
| 15 |
+
backgroundColor = "#FFFFFF"
|
| 16 |
+
secondaryBackgroundColor = "#F3F4F6"
|
| 17 |
+
borderColor = "#D1D5DB"
|
src/.streamlit/theme.toml
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
theme_name = "花明 (Flowers Bright) 🌸"
|
| 2 |
+
theme_poem = "🌸「浅色但不苍白,明亮而不过曝,柔和中有力量」"
|
src/.streamlit/themes/antropic.toml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
theme_name = "Antropic"
|
| 2 |
+
|
| 3 |
+
[theme]
|
| 4 |
+
primaryColor = "#bb5a38"
|
| 5 |
+
backgroundColor = "#f4f3ed"
|
| 6 |
+
secondaryBackgroundColor = "#ecebe3"
|
| 7 |
+
textColor = "#3d3a2a"
|
| 8 |
+
linkColor = "#3d3a2a"
|
| 9 |
+
borderColor = "#d3d2ca"
|
| 10 |
+
showWidgetBorder = true
|
| 11 |
+
baseRadius = "0.6rem"
|
| 12 |
+
font = "SpaceGrotesk"
|
| 13 |
+
headingFont = "SpaceGroteskHeader"
|
| 14 |
+
codeFont = "SpaceMono"
|
| 15 |
+
codeBackgroundColor = "#ecebe4"
|
| 16 |
+
showSidebarBorder = true
|
| 17 |
+
|
| 18 |
+
[theme.sidebar]
|
| 19 |
+
backgroundColor = "#e8e7dd"
|
| 20 |
+
secondaryBackgroundColor = "#ecebe3"
|
src/.streamlit/themes/flowers_bright.toml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
theme_name = "花明 (Flowers Bright) 🌸"
|
| 2 |
+
theme_poem = "🌸「浅色但不苍白,明亮而不过曝,柔和中有力量」"
|
| 3 |
+
|
| 4 |
+
[theme]
|
| 5 |
+
base = "light"
|
| 6 |
+
baseFontSize = 15
|
| 7 |
+
primaryColor = "#FF5F7E" # 樱花粉
|
| 8 |
+
backgroundColor = "#F9FAFB" # 轻柔灰白
|
| 9 |
+
secondaryBackgroundColor = "#F0F4F8" # 卡片淡蓝灰
|
| 10 |
+
textColor = "#1F2937" # 蓝黑灰
|
| 11 |
+
linkColor = "#2563EB" # 浅蓝色链接
|
| 12 |
+
borderColor = "#D1D5DB" # 卡片分界线
|
| 13 |
+
showWidgetBorder = false
|
| 14 |
+
baseRadius = "0.3rem"
|
| 15 |
+
font = "Poppins" # 保持现代圆润感
|
| 16 |
+
|
| 17 |
+
[theme.sidebar]
|
| 18 |
+
backgroundColor = "#FFFFFF"
|
| 19 |
+
secondaryBackgroundColor = "#F3F4F6"
|
| 20 |
+
borderColor = "#D1D5DB"
|
src/.streamlit/themes/spotify.toml
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
theme_name = "Spotify"
|
| 2 |
+
|
| 3 |
+
[theme]
|
| 4 |
+
base = "dark"
|
| 5 |
+
baseFontSize = 15
|
| 6 |
+
primaryColor = "#1ED760"
|
| 7 |
+
backgroundColor = "#121212"
|
| 8 |
+
secondaryBackgroundColor = "#333333"
|
| 9 |
+
textColor = "#FFFFFF"
|
| 10 |
+
linkColor = "#9D9D9D"
|
| 11 |
+
borderColor = "#7F7F7F"
|
| 12 |
+
showWidgetBorder = false
|
| 13 |
+
baseRadius = "0.3rem"
|
| 14 |
+
font = "Poppins"
|
| 15 |
+
|
| 16 |
+
[theme.sidebar]
|
| 17 |
+
backgroundColor = "#000000"
|
| 18 |
+
secondaryBackgroundColor = "#333333"
|
| 19 |
+
borderColor = "#696969"
|
src/.streamlit/themes/willows_dark.toml
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
theme_name = "柳暗 (Willows Dark) 🌒"
|
| 2 |
+
theme_poem = "🌒「深而不死黑,蓝而不夺目,静而不沉闷」柳影婆娑之下,代码悄然生长。"
|
| 3 |
+
|
| 4 |
+
[theme]
|
| 5 |
+
base = "dark"
|
| 6 |
+
baseFontSize = 15
|
| 7 |
+
primaryColor = "#6EA8FE" # 柔和的蓝色光感
|
| 8 |
+
backgroundColor = "#0D1117" # 深夜蓝黑
|
| 9 |
+
secondaryBackgroundColor = "#1A1F2B" # 柔和灰蓝
|
| 10 |
+
textColor = "#D1D5DB" # 清晰柔白
|
| 11 |
+
linkColor = "#B8C0FF" # 柔紫蓝
|
| 12 |
+
borderColor = "#2E3440" # 北极灰边
|
| 13 |
+
showWidgetBorder = false
|
| 14 |
+
baseRadius = "0.3rem"
|
| 15 |
+
font = "JetBrains Mono" # 强科技感
|
| 16 |
+
|
| 17 |
+
[theme.sidebar]
|
| 18 |
+
backgroundColor = "#0A0A0A"
|
| 19 |
+
secondaryBackgroundColor = "#1A1A1A"
|
| 20 |
+
borderColor = "#2E3440"
|
src/data_loader.py
CHANGED
|
@@ -7,7 +7,9 @@ import streamlit as st
|
|
| 7 |
from functools import lru_cache # For non-Streamlit specific caching if needed
|
| 8 |
|
| 9 |
# Assuming utils.py is in the same directory
|
| 10 |
-
from
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# --- Cache Clearing Functions ---
|
| 13 |
# These are more specific cache clearing functions that can be called by model methods.
|
|
|
|
| 7 |
from functools import lru_cache # For non-Streamlit specific caching if needed
|
| 8 |
|
| 9 |
# Assuming utils.py is in the same directory
|
| 10 |
+
from infra import (
|
| 11 |
+
DATA_ROOT_PATH,
|
| 12 |
+
) # Used for ensuring directory exists
|
| 13 |
|
| 14 |
# --- Cache Clearing Functions ---
|
| 15 |
# These are more specific cache clearing functions that can be called by model methods.
|
src/infra.py
ADDED
|
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# utils.py
|
| 2 |
+
from pathlib import Path
|
| 3 |
+
from enum import Enum, auto
|
| 4 |
+
|
| 5 |
+
# Base path for studies and trials.
|
| 6 |
+
# Streamlit apps are typically run from their root directory.
|
| 7 |
+
# If your app.py is in 'src/', and 'data/' is at the same level as 'src/',
|
| 8 |
+
# then Path("./data") from app.py's perspective would be Path("../data").
|
| 9 |
+
# For simplicity, assuming data is relative to where streamlit run is executed,
|
| 10 |
+
# or you adjust this path accordingly.
|
| 11 |
+
DATA_ROOT_PATH = Path("./data").resolve()
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
class AppMode(Enum):
|
| 15 |
+
VIEWING = auto()
|
| 16 |
+
# Potentially other modes like COMPARISON, EDITING etc.
|
src/logo.png
ADDED
|
Git LFS Details
|
src/streamlit_app.py
CHANGED
|
@@ -20,7 +20,7 @@ st.logo("logo.png", icon_image="logo.png")
|
|
| 20 |
|
| 21 |
# 导入重构后的模块
|
| 22 |
try:
|
| 23 |
-
from
|
| 24 |
from data_models import Study, Trial # Study, Trial will be used
|
| 25 |
from data_loader import discover_studies_cached, ensure_data_directory_exists
|
| 26 |
from theme_selector import render_theme_selector # 新增:导入主题选择器
|
|
@@ -441,46 +441,84 @@ if current_study and current_trial:
|
|
| 441 |
break
|
| 442 |
|
| 443 |
# 显示metric组件
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
|
| 450 |
-
|
| 451 |
-
|
| 452 |
-
|
| 453 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 454 |
else:
|
| 455 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 456 |
else:
|
| 457 |
-
|
| 458 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 459 |
else:
|
| 460 |
-
|
| 461 |
-
f"当前值 (Step {
|
| 462 |
-
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
|
|
|
|
|
|
|
|
|
| 481 |
|
| 482 |
except Exception as e:
|
| 483 |
st.warning(f"计算指标值时出错: {e}")
|
|
|
|
| 484 |
|
| 485 |
try:
|
| 486 |
# 创建 Plotly 图表
|
|
|
|
| 20 |
|
| 21 |
# 导入重构后的模块
|
| 22 |
try:
|
| 23 |
+
from infra import DATA_ROOT_PATH, AppMode
|
| 24 |
from data_models import Study, Trial # Study, Trial will be used
|
| 25 |
from data_loader import discover_studies_cached, ensure_data_directory_exists
|
| 26 |
from theme_selector import render_theme_selector # 新增:导入主题选择器
|
|
|
|
| 441 |
break
|
| 442 |
|
| 443 |
# 显示metric组件
|
| 444 |
+
# print(metric_cols)
|
| 445 |
+
# print(metric_cols[idx])
|
| 446 |
+
# print(len(metric_cols), len(all_tracks))
|
| 447 |
+
metric_col = metric_cols[0] if len(metric_cols) == 1 else metric_cols[idx]
|
| 448 |
+
|
| 449 |
+
try:
|
| 450 |
+
with (
|
| 451 |
+
metric_col
|
| 452 |
+
):
|
| 453 |
+
if current_value is not None:
|
| 454 |
+
# 确定label
|
| 455 |
+
if track is not None:
|
| 456 |
+
if current_step_found != current_step:
|
| 457 |
+
label = f"{track} (Step {current_step_found})"
|
| 458 |
+
else:
|
| 459 |
+
label = f"{track}"
|
| 460 |
else:
|
| 461 |
+
if current_step_found != current_step:
|
| 462 |
+
label = f"当前值 (Step {current_step_found})"
|
| 463 |
+
else:
|
| 464 |
+
label = (
|
| 465 |
+
f"当前值 (Step {current_step})"
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
st.metric(
|
| 469 |
+
label=label,
|
| 470 |
+
value=f"{current_value:.4f}",
|
| 471 |
+
delta=f"{delta_value:.4f}"
|
| 472 |
+
if delta_value is not None
|
| 473 |
+
else None,
|
| 474 |
+
)
|
| 475 |
else:
|
| 476 |
+
# 没有找到任何数据
|
| 477 |
+
track_label = (
|
| 478 |
+
track if track is not None else "数据"
|
| 479 |
+
)
|
| 480 |
+
st.metric(
|
| 481 |
+
label=f"{track_label}",
|
| 482 |
+
value="无数据",
|
| 483 |
+
delta=None,
|
| 484 |
+
)
|
| 485 |
+
except Exception as e:
|
| 486 |
+
if current_value is not None:
|
| 487 |
+
# 确定label
|
| 488 |
+
if track is not None:
|
| 489 |
+
if current_step_found != current_step:
|
| 490 |
+
label = f"{track} (Step {current_step_found})"
|
| 491 |
+
else:
|
| 492 |
+
label = f"{track}"
|
| 493 |
else:
|
| 494 |
+
if current_step_found != current_step:
|
| 495 |
+
label = f"当前值 (Step {current_step_found})"
|
| 496 |
+
else:
|
| 497 |
+
label = (
|
| 498 |
+
f"当前值 (Step {current_step})"
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
st.metric(
|
| 502 |
+
label=label,
|
| 503 |
+
value=f"{current_value:.4f}",
|
| 504 |
+
delta=f"{delta_value:.4f}"
|
| 505 |
+
if delta_value is not None
|
| 506 |
+
else None,
|
| 507 |
+
)
|
| 508 |
+
else:
|
| 509 |
+
# 没有找到任何数据
|
| 510 |
+
track_label = (
|
| 511 |
+
track if track is not None else "数据"
|
| 512 |
+
)
|
| 513 |
+
st.metric(
|
| 514 |
+
label=f"{track_label}",
|
| 515 |
+
value="无数据",
|
| 516 |
+
delta=None,
|
| 517 |
+
)
|
| 518 |
|
| 519 |
except Exception as e:
|
| 520 |
st.warning(f"计算指标值时出错: {e}")
|
| 521 |
+
raise e
|
| 522 |
|
| 523 |
try:
|
| 524 |
# 创建 Plotly 图表
|
src/test.py
DELETED
|
@@ -1,42 +0,0 @@
|
|
| 1 |
-
import plotly.graph_objects as go
|
| 2 |
-
from plotly.subplots import make_subplots
|
| 3 |
-
import numpy as np
|
| 4 |
-
|
| 5 |
-
# 创建示例数据
|
| 6 |
-
x = np.linspace(0, 10, 100)
|
| 7 |
-
y1 = np.sin(x)
|
| 8 |
-
y2 = np.cos(x)
|
| 9 |
-
|
| 10 |
-
# 创建两个 FigureWidget 图表
|
| 11 |
-
fig1 = go.FigureWidget(data=[go.Scatter(x=x, y=y1, mode="lines", name="sin(x)")])
|
| 12 |
-
fig2 = go.FigureWidget(data=[go.Scatter(x=x, y=y2, mode="lines", name="cos(x)")])
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
# 定义悬停事件的回调函数
|
| 16 |
-
def hover_fn(trace, points, state):
|
| 17 |
-
if points.xs:
|
| 18 |
-
hover_x = points.xs[0]
|
| 19 |
-
with fig2.batch_update():
|
| 20 |
-
# 在第二个图表上添加垂直线
|
| 21 |
-
fig2.layout.shapes = [
|
| 22 |
-
dict(
|
| 23 |
-
type="line",
|
| 24 |
-
x0=hover_x,
|
| 25 |
-
x1=hover_x,
|
| 26 |
-
y0=min(y2),
|
| 27 |
-
y1=max(y2),
|
| 28 |
-
line=dict(color="red", dash="dot"),
|
| 29 |
-
)
|
| 30 |
-
]
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
# 为第一个图表的第一个 trace 注册悬停事件
|
| 34 |
-
fig1.data[0].on_hover(hover_fn)
|
| 35 |
-
|
| 36 |
-
# 显示图表
|
| 37 |
-
import streamlit as st
|
| 38 |
-
|
| 39 |
-
st.plotly_chart(fig1, use_container_width=True)
|
| 40 |
-
st.plotly_chart(fig2, use_container_width=True)
|
| 41 |
-
|
| 42 |
-
# %%
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/visualizers/base_visualizer.py
DELETED
|
@@ -1,254 +0,0 @@
|
|
| 1 |
-
# src/visualizers/base_visualizer.py
|
| 2 |
-
from abc import ABC, abstractmethod
|
| 3 |
-
from pathlib import Path
|
| 4 |
-
from typing import Dict, Type, Any, Optional, Callable, List
|
| 5 |
-
import streamlit as st
|
| 6 |
-
|
| 7 |
-
# --- Component Registry ---
|
| 8 |
-
VISUALIZER_REGISTRY: Dict[str, Type["VisualizationComponent"]] = {}
|
| 9 |
-
|
| 10 |
-
def register_visualizer(name: str):
|
| 11 |
-
"""
|
| 12 |
-
一个装饰器,用于将可视化组件类注册到全局注册表。
|
| 13 |
-
A decorator to register a visualization component class to the global registry.
|
| 14 |
-
"""
|
| 15 |
-
def decorator(cls: Type["VisualizationComponent"]):
|
| 16 |
-
if name in VISUALIZER_REGISTRY:
|
| 17 |
-
# 在调试或开发模式下可能是警告,生产模式下可能是错误
|
| 18 |
-
# In debug/dev mode this might be a warning, in production an error
|
| 19 |
-
print(f"警告: 可视化组件 '{name}' 已被注册,将被覆盖。Visualizer '{name}' already registered. Will be overridden.")
|
| 20 |
-
VISUALIZER_REGISTRY[name] = cls
|
| 21 |
-
return cls
|
| 22 |
-
return decorator
|
| 23 |
-
|
| 24 |
-
def get_visualizer_class(type_name: str) -> Optional[Type["VisualizationComponent"]]:
|
| 25 |
-
"""
|
| 26 |
-
从注册表中获取组件类。
|
| 27 |
-
Gets a component class from the registry.
|
| 28 |
-
"""
|
| 29 |
-
return VISUALIZER_REGISTRY.get(type_name)
|
| 30 |
-
|
| 31 |
-
# --- Abstract Base Class for Visualization Components ---
|
| 32 |
-
class VisualizationComponent(ABC):
|
| 33 |
-
"""
|
| 34 |
-
可视化组件的抽象基类。
|
| 35 |
-
Abstract base class for all visualization components.
|
| 36 |
-
"""
|
| 37 |
-
def __init__(self,
|
| 38 |
-
component_instance_id: str,
|
| 39 |
-
trial_root_path: Path,
|
| 40 |
-
# data_asset_info: Dict[str, Any], # 描述此组件主要关联的数据资产信息 (来自清单)
|
| 41 |
-
# Describes the data asset this component is primarily associated with (from manifest)
|
| 42 |
-
# ^ 将被更通用的 data_sources_map 替代
|
| 43 |
-
data_sources_map: Dict[str, Dict[str, Any]], # Key: 逻辑数据源名称, Value: 数据资产信息字典
|
| 44 |
-
# Key: logical data source name, Value: data asset info dict
|
| 45 |
-
# e.g., {"main_scalar_data": asset_info_for_loss, "reference_images": asset_info_for_images}
|
| 46 |
-
component_specific_config: Dict[str, Any] = None
|
| 47 |
-
):
|
| 48 |
-
"""
|
| 49 |
-
初始化可视化组件。
|
| 50 |
-
Initializes the visualization component.
|
| 51 |
-
|
| 52 |
-
Args:
|
| 53 |
-
component_instance_id (str): 此组件在仪表盘上的唯一实例ID。
|
| 54 |
-
Unique instance ID for this component on the dashboard.
|
| 55 |
-
trial_root_path (Path): 此组件所属的Trial的根目录路径。
|
| 56 |
-
Root directory path of the Trial this component belongs to.
|
| 57 |
-
data_sources_map (Dict[str, Dict[str, Any]]):
|
| 58 |
-
一个字典,映射逻辑数据源名称到具体的数据资产信息。
|
| 59 |
-
数据资产信息字典通常包含 'asset_id', 'display_name', 'data_type', 'path',
|
| 60 |
-
以及其他从 _trial_manifest.toml 中解析得到的元数据。
|
| 61 |
-
A dictionary mapping logical data source names to specific data asset information.
|
| 62 |
-
The data asset info dict typically contains 'asset_id', 'display_name', 'data_type', 'path',
|
| 63 |
-
and other metadata parsed from _trial_manifest.toml.
|
| 64 |
-
component_specific_config (Dict[str, Any], optional):
|
| 65 |
-
特定于此组件实例的配置 (例如,图表标题、颜色等)。
|
| 66 |
-
Configuration specific to this component instance (e.g., chart title, color, etc.).
|
| 67 |
-
"""
|
| 68 |
-
self.component_instance_id = component_instance_id
|
| 69 |
-
self.trial_root_path = trial_root_path
|
| 70 |
-
self.data_sources_map = data_sources_map
|
| 71 |
-
self.config = component_specific_config if component_specific_config is not None else {}
|
| 72 |
-
|
| 73 |
-
# 组件自身持久化配置或小型数据的路径
|
| 74 |
-
# Path for the component to persist its own configuration or small data
|
| 75 |
-
self.component_private_storage_path = self.trial_root_path / "visualizers_data" / self.component_instance_id
|
| 76 |
-
self.component_private_storage_path.mkdir(parents=True, exist_ok=True)
|
| 77 |
-
|
| 78 |
-
self._current_global_step: Optional[int] = None
|
| 79 |
-
self._on_global_step_change_request: Optional[Callable[[int], None]] = None
|
| 80 |
-
self._all_available_steps: Optional[List[int]] = None # 由主应用或数据加载器填充
|
| 81 |
-
|
| 82 |
-
def _get_data_asset_info(self, logical_name: str = "default") -> Optional[Dict[str, Any]]:
|
| 83 |
-
"""
|
| 84 |
-
辅助方法,获取指定逻辑名称的数据资产信息。
|
| 85 |
-
Helper method to get data asset info for a given logical name.
|
| 86 |
-
如果组件只处理一个主要数据源,可以使用 "default" 或在初始化时指定。
|
| 87 |
-
If a component handles one primary data source, "default" or a specific name can be used.
|
| 88 |
-
"""
|
| 89 |
-
return self.data_sources_map.get(logical_name)
|
| 90 |
-
|
| 91 |
-
def _get_data_asset_path(self, logical_name: str = "default") -> Optional[Path]:
|
| 92 |
-
"""获取指定逻辑数据源的绝对路径。Gets the absolute path for a given logical data source."""
|
| 93 |
-
asset_info = self._get_data_asset_info(logical_name)
|
| 94 |
-
if asset_info and "path" in asset_info:
|
| 95 |
-
# 路径在清单中是相对于trial_root_path的
|
| 96 |
-
# Path in manifest is relative to trial_root_path
|
| 97 |
-
return (self.trial_root_path / asset_info["path"]).resolve()
|
| 98 |
-
return None
|
| 99 |
-
|
| 100 |
-
def configure_global_step_interaction(self,
|
| 101 |
-
current_step: Optional[int],
|
| 102 |
-
all_available_steps: Optional[List[int]],
|
| 103 |
-
on_step_change_request_callback: Optional[Callable[[int], None]]):
|
| 104 |
-
"""
|
| 105 |
-
由主应用调用,以配置与全局步骤相关的交互。
|
| 106 |
-
Called by the main application to configure global step related interactions.
|
| 107 |
-
|
| 108 |
-
Args:
|
| 109 |
-
current_step (Optional[int]): 当前选中的全局步骤。
|
| 110 |
-
The currently selected global step.
|
| 111 |
-
all_available_steps (Optional[List[int]]): 此Trial中所有可用的全局步骤列表 (已排序)。
|
| 112 |
-
A sorted list of all available global steps in this Trial.
|
| 113 |
-
on_step_change_request_callback (Optional[Callable[[int], None]]):
|
| 114 |
-
当组件希望更改全局步骤时调用的回调函数。
|
| 115 |
-
Callback function to be called when the component wishes to change the global step.
|
| 116 |
-
"""
|
| 117 |
-
self._current_global_step = current_step
|
| 118 |
-
self._all_available_steps = sorted(list(set(all_available_steps))) if all_available_steps else []
|
| 119 |
-
self._on_global_step_change_request = on_step_change_request_callback
|
| 120 |
-
|
| 121 |
-
def _request_global_step_change(self, new_step: int) -> None:
|
| 122 |
-
"""
|
| 123 |
-
组件内部调用此方法来请求更改全局共享的global_step。
|
| 124 |
-
Component calls this internally to request a change to the shared global_step.
|
| 125 |
-
"""
|
| 126 |
-
if self._on_global_step_change_request:
|
| 127 |
-
if self._all_available_steps and new_step not in self._all_available_steps:
|
| 128 |
-
# 如果请求的步骤无效,可以选择寻找最近的有效步骤或忽略
|
| 129 |
-
# If requested step is invalid, can choose to find nearest valid step or ignore
|
| 130 |
-
# For now, let's assume the interaction (e.g., chart click) provides a valid step from its data
|
| 131 |
-
print(f"警告: 组件 {self.component_instance_id} 请求了一个无效的全局步骤 {new_step}。")
|
| 132 |
-
# Potentially find closest:
|
| 133 |
-
# if self._all_available_steps:
|
| 134 |
-
# new_step = min(self._all_available_steps, key=lambda x: abs(x - new_step))
|
| 135 |
-
|
| 136 |
-
self._on_global_step_change_request(new_step)
|
| 137 |
-
else:
|
| 138 |
-
st.warning(f"组件 {self.component_instance_id}: 尝试更改全局步骤,但未设置回调。")
|
| 139 |
-
|
| 140 |
-
def _get_closest_available_step(self, target_step: Optional[int]) -> Optional[int]:
|
| 141 |
-
"""
|
| 142 |
-
如果目标步骤无效或数据在该步骤不可用,则查找最近的可用步骤。
|
| 143 |
-
Finds the closest available step if the target step is invalid or data isn't available at that step.
|
| 144 |
-
组件的子类可以覆盖此逻辑以适应其特定的数据可用性。
|
| 145 |
-
Subclasses can override this logic for their specific data availability.
|
| 146 |
-
"""
|
| 147 |
-
if target_step is None:
|
| 148 |
-
return None
|
| 149 |
-
if not self._all_available_steps:
|
| 150 |
-
return None
|
| 151 |
-
if target_step in self._all_available_steps:
|
| 152 |
-
return target_step
|
| 153 |
-
|
| 154 |
-
# 寻找最接近的步骤 (简单的实现)
|
| 155 |
-
# Find the closest step (simple implementation)
|
| 156 |
-
try:
|
| 157 |
-
closest = min(self._all_available_steps, key=lambda x: abs(x - target_step))
|
| 158 |
-
return closest
|
| 159 |
-
except ValueError: # _all_available_steps为空
|
| 160 |
-
return None
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
@abstractmethod
|
| 164 |
-
def load_data(self) -> None:
|
| 165 |
-
"""
|
| 166 |
-
加载此组件渲染所需的数据。
|
| 167 |
-
Load data required by this component for rendering.
|
| 168 |
-
实现者应使用 self._get_data_asset_path() 来获取数据文件路径。
|
| 169 |
-
Implementers should use self._get_data_asset_path() to get data file paths.
|
| 170 |
-
数据加载后通常存储在实例变量中。
|
| 171 |
-
Loaded data is typically stored in instance variables.
|
| 172 |
-
"""
|
| 173 |
-
pass
|
| 174 |
-
|
| 175 |
-
@abstractmethod
|
| 176 |
-
def render(self) -> None:
|
| 177 |
-
"""
|
| 178 |
-
将组件渲染为Streamlit UI元素。
|
| 179 |
-
Renders the component as Streamlit UI elements.
|
| 180 |
-
应使用 self._current_global_step (可能通过 self._get_closest_available_step 调整) 来显示对应步骤的数据。
|
| 181 |
-
Should use self._current_global_step (possibly adjusted by self._get_closest_available_step)
|
| 182 |
-
to display data for the corresponding step.
|
| 183 |
-
任何可以触发全局步骤更改的交互都应调用 self._request_global_step_change()。
|
| 184 |
-
Any interaction that can trigger a global step change should call self._request_global_step_change().
|
| 185 |
-
"""
|
| 186 |
-
pass
|
| 187 |
-
|
| 188 |
-
@classmethod
|
| 189 |
-
@abstractmethod
|
| 190 |
-
def can_handle_data_types(cls, data_type_names: List[str]) -> bool:
|
| 191 |
-
"""
|
| 192 |
-
类方法:判断此组件类型是否能处理清单中声明的一个或多个数据类型。
|
| 193 |
-
Class method: Determines if this component type can handle one or more data types
|
| 194 |
-
declared in the manifest.
|
| 195 |
-
|
| 196 |
-
Args:
|
| 197 |
-
data_type_names (List[str]): 从数据资产清单中获取的数据类型名称列表。
|
| 198 |
-
A list of data type names from a data asset manifest.
|
| 199 |
-
(通常,主应用会为每个数据资产调用此方法,列表只包含一个元素)
|
| 200 |
-
(Usually, the main app calls this for each data asset, so the list has one element)
|
| 201 |
-
|
| 202 |
-
Returns:
|
| 203 |
-
bool: True 如果此组件可以处理至少一种给定的数据类型。
|
| 204 |
-
True if this component can handle at least one of the given data types.
|
| 205 |
-
"""
|
| 206 |
-
pass
|
| 207 |
-
|
| 208 |
-
@classmethod
|
| 209 |
-
def get_display_name(cls) -> str:
|
| 210 |
-
"""
|
| 211 |
-
类方法:返回此组件类型的用户友好显示名称。
|
| 212 |
-
Class method: Returns a user-friendly display name for this component type.
|
| 213 |
-
"""
|
| 214 |
-
# 简单的实现:将类名从CamelCase转换为带空格的标题
|
| 215 |
-
# Simple implementation: Convert CamelCase class name to space-separated title
|
| 216 |
-
name = cls.__name__
|
| 217 |
-
if name.endswith("Visualizer"):
|
| 218 |
-
name = name[:-len("Visualizer")]
|
| 219 |
-
s1 = VISUALIZER_REGISTRY.get(name, name) # Fallback to class name if not in registry (should not happen with decorator)
|
| 220 |
-
# Add spaces before capital letters (simple version)
|
| 221 |
-
import re
|
| 222 |
-
return re.sub(r'(?<!^)(?=[A-Z])', ' ', s1)
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
def save_component_config(self) -> None:
|
| 226 |
-
"""
|
| 227 |
-
将当前组件的特定配置 (self.config) 保存到其私有存储路径。
|
| 228 |
-
Saves the current component-specific configuration (self.config) to its private storage path.
|
| 229 |
-
"""
|
| 230 |
-
config_file = self.component_private_storage_path / "_component_config.toml"
|
| 231 |
-
try:
|
| 232 |
-
import tomli_w # 确保已安装 Ensure tomli_w is installed
|
| 233 |
-
with open(config_file, "wb") as f:
|
| 234 |
-
tomli_w.dump(self.config, f)
|
| 235 |
-
# st.toast(f"组件 '{self.component_instance_id}' 配置已保存。")
|
| 236 |
-
except Exception as e:
|
| 237 |
-
st.error(f"保存组件 '{self.component_instance_id}' 配置失败: {e}")
|
| 238 |
-
|
| 239 |
-
def load_component_config(self) -> None:
|
| 240 |
-
"""
|
| 241 |
-
从其私有存储路径加载组件的特定配置,并更新 self.config。
|
| 242 |
-
Loads the component-specific configuration from its private storage path and updates self.config.
|
| 243 |
-
"""
|
| 244 |
-
config_file = self.component_private_storage_path / "_component_config.toml"
|
| 245 |
-
if config_file.exists():
|
| 246 |
-
try:
|
| 247 |
-
import tomli # 确保已安装 Ensure tomli is installed
|
| 248 |
-
with open(config_file, "rb") as f:
|
| 249 |
-
loaded_config = tomli.load(f)
|
| 250 |
-
self.config.update(loaded_config) # 合并加载的配置 Merge loaded config
|
| 251 |
-
# st.toast(f"组件 '{self.component_instance_id}' 配置已加载。")
|
| 252 |
-
except Exception as e:
|
| 253 |
-
st.error(f"加载组件 '{self.component_instance_id}' 配置失败: {e}")
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/visualizers/ide_app.py
DELETED
|
@@ -1,303 +0,0 @@
|
|
| 1 |
-
# src/debugger/ide_app.py
|
| 2 |
-
import streamlit as st
|
| 3 |
-
from pathlib import Path
|
| 4 |
-
import tempfile
|
| 5 |
-
import json
|
| 6 |
-
import shutil
|
| 7 |
-
from typing import Dict, Any, Optional, Type, List
|
| 8 |
-
import tomli # 确保导入 tomli Ensure tomli is imported
|
| 9 |
-
|
| 10 |
-
# 动态确定根目录,以便能够导入src下的模块
|
| 11 |
-
# Dynamically determine root directory to import modules from src
|
| 12 |
-
try:
|
| 13 |
-
current_file_path = Path(__file__).resolve()
|
| 14 |
-
# 假设 ide_app.py 在 src/debugger/ 目录下
|
| 15 |
-
# Assumes ide_app.py is in src/debugger/
|
| 16 |
-
# src_path = current_file_path.parent.parent
|
| 17 |
-
# import sys
|
| 18 |
-
# if str(src_path) not in sys.path:
|
| 19 |
-
# sys.path.insert(0, str(src_path))
|
| 20 |
-
except NameError:
|
| 21 |
-
# project_root = Path(".") # 默认为当前工作目录
|
| 22 |
-
pass # 在某些环境中 __file__ 可能未定义 In some environments __file__ might be undefined
|
| 23 |
-
|
| 24 |
-
try:
|
| 25 |
-
from visualizers.base_visualizer import (
|
| 26 |
-
VISUALIZER_REGISTRY,
|
| 27 |
-
get_visualizer_class,
|
| 28 |
-
VisualizationComponent
|
| 29 |
-
)
|
| 30 |
-
# 确保所有组件都被导入和注册
|
| 31 |
-
# Ensure all components are imported and registered
|
| 32 |
-
import visualizers.scalar_dashboard_visualizer
|
| 33 |
-
|
| 34 |
-
except ImportError as e:
|
| 35 |
-
st.error(
|
| 36 |
-
"错误:无法导入可视化组件模块。请确保此IDE应用位于正确的项目结构中,"
|
| 37 |
-
f"并且 `visualizers` 目录及其内容可访问。\n详细信息: {e}"
|
| 38 |
-
"Error: Could not import visualization component modules. Ensure this IDE app is in the correct "
|
| 39 |
-
f"project structure and the `visualizers` directory and its contents are accessible.\nDetails: {e}"
|
| 40 |
-
)
|
| 41 |
-
st.stop()
|
| 42 |
-
|
| 43 |
-
# --- 应用标题和配置 ---
|
| 44 |
-
st.set_page_config(layout="wide", page_title="Flowillower - 组件IDE (Component IDE)")
|
| 45 |
-
st.title("🔬 Flowillower - 可视化组件IDE (Visualization Component IDE)")
|
| 46 |
-
st.markdown("在此环境中独立测试、调试和预览您的可视化组件。")
|
| 47 |
-
|
| 48 |
-
# --- 会话状态初始化 ---
|
| 49 |
-
if "selected_visualizer_type_name" not in st.session_state:
|
| 50 |
-
st.session_state.selected_visualizer_type_name = None
|
| 51 |
-
if "component_instance_id" not in st.session_state:
|
| 52 |
-
st.session_state.component_instance_id = "test_instance_001"
|
| 53 |
-
if "trial_root_path_str" not in st.session_state:
|
| 54 |
-
st.session_state.trial_root_path_str = tempfile.mkdtemp(prefix="flowillower_ide_trial_")
|
| 55 |
-
if "component_specific_config_str" not in st.session_state:
|
| 56 |
-
st.session_state.component_specific_config_str = "{}"
|
| 57 |
-
if "active_visualizer_instance" not in st.session_state:
|
| 58 |
-
st.session_state.active_visualizer_instance = None
|
| 59 |
-
if "generated_data_sources_map" not in st.session_state:
|
| 60 |
-
st.session_state.generated_data_sources_map = None
|
| 61 |
-
if "current_simulated_global_step" not in st.session_state:
|
| 62 |
-
st.session_state.current_simulated_global_step = 0 # 默认值 Default value
|
| 63 |
-
if "all_simulated_steps" not in st.session_state:
|
| 64 |
-
st.session_state.all_simulated_steps = []
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
def cleanup_temp_dir(path_str):
|
| 68 |
-
try:
|
| 69 |
-
if path_str and Path(path_str).exists() and "flowillower_ide_trial_" in path_str:
|
| 70 |
-
shutil.rmtree(path_str)
|
| 71 |
-
st.toast(f"临时目录已清理: {path_str}")
|
| 72 |
-
except Exception as e:
|
| 73 |
-
st.warning(f"清理临时目录失败 {path_str}: {e}")
|
| 74 |
-
|
| 75 |
-
with st.sidebar:
|
| 76 |
-
st.header("组件选择与配置")
|
| 77 |
-
|
| 78 |
-
registered_type_names = list(VISUALIZER_REGISTRY.keys())
|
| 79 |
-
if not registered_type_names:
|
| 80 |
-
st.error("错误:没有已注册的可视化组件类型。")
|
| 81 |
-
st.stop()
|
| 82 |
-
|
| 83 |
-
if st.session_state.selected_visualizer_type_name is None and registered_type_names:
|
| 84 |
-
st.session_state.selected_visualizer_type_name = registered_type_names[0]
|
| 85 |
-
|
| 86 |
-
st.session_state.selected_visualizer_type_name = st.selectbox(
|
| 87 |
-
"选择可视化组件类型",
|
| 88 |
-
options=registered_type_names,
|
| 89 |
-
index=registered_type_names.index(st.session_state.selected_visualizer_type_name)
|
| 90 |
-
if st.session_state.selected_visualizer_type_name in registered_type_names else 0,
|
| 91 |
-
help="选择您想要测试的可视化组件。"
|
| 92 |
-
)
|
| 93 |
-
|
| 94 |
-
SelectedVisualizerClass: Optional[Type[VisualizationComponent]] = get_visualizer_class(st.session_state.selected_visualizer_type_name)
|
| 95 |
-
|
| 96 |
-
if SelectedVisualizerClass:
|
| 97 |
-
st.caption(f"显示名称: `{SelectedVisualizerClass.get_display_name()}`")
|
| 98 |
-
else:
|
| 99 |
-
st.error(f"无法加载组件类 '{st.session_state.selected_visualizer_type_name}'。")
|
| 100 |
-
st.stop()
|
| 101 |
-
|
| 102 |
-
st.session_state.component_instance_id = st.text_input(
|
| 103 |
-
"组件实例ID", value=st.session_state.component_instance_id
|
| 104 |
-
)
|
| 105 |
-
st.markdown(f"**临时Trial根路径:** `{st.session_state.trial_root_path_str}`")
|
| 106 |
-
|
| 107 |
-
example_data_target_dir = Path(st.session_state.trial_root_path_str) / "example_assets_for_ide"
|
| 108 |
-
|
| 109 |
-
if st.button("生成示例数据"):
|
| 110 |
-
if SelectedVisualizerClass:
|
| 111 |
-
try:
|
| 112 |
-
if example_data_target_dir.exists():
|
| 113 |
-
shutil.rmtree(example_data_target_dir)
|
| 114 |
-
example_data_target_dir.mkdir(parents=True, exist_ok=True)
|
| 115 |
-
|
| 116 |
-
st.session_state.generated_data_sources_map = SelectedVisualizerClass.generate_example_data(
|
| 117 |
-
example_data_path=example_data_target_dir
|
| 118 |
-
)
|
| 119 |
-
st.success(f"'{SelectedVisualizerClass.get_display_name()}' 的示例数据已生成。")
|
| 120 |
-
|
| 121 |
-
temp_all_steps = set()
|
| 122 |
-
if st.session_state.generated_data_sources_map:
|
| 123 |
-
for ds_name, ds_info in st.session_state.generated_data_sources_map.items():
|
| 124 |
-
if "path" in ds_info:
|
| 125 |
-
try:
|
| 126 |
-
# 路径是相对于 trial_root_path 的
|
| 127 |
-
# Path is relative to trial_root_path
|
| 128 |
-
full_path = Path(st.session_state.trial_root_path_str) / ds_info["path"]
|
| 129 |
-
if full_path.exists() and full_path.suffix == ".toml":
|
| 130 |
-
with open(full_path, "rb") as f:
|
| 131 |
-
d = tomli.load(f)
|
| 132 |
-
if "metrics" in d and isinstance(d["metrics"], list):
|
| 133 |
-
for point in d["metrics"]:
|
| 134 |
-
if "global_step" in point:
|
| 135 |
-
temp_all_steps.add(int(point["global_step"]))
|
| 136 |
-
except Exception as e_load:
|
| 137 |
-
st.warning(f"解析示例数据中的步骤时出错 ({ds_info['path']}): {e_load}")
|
| 138 |
-
|
| 139 |
-
st.session_state.all_simulated_steps = sorted(list(temp_all_steps))
|
| 140 |
-
if not st.session_state.all_simulated_steps: # 如果没有解析到步骤,至少放一个0
|
| 141 |
-
st.session_state.all_simulated_steps = [0]
|
| 142 |
-
|
| 143 |
-
# 更新 current_simulated_global_step 为有效值
|
| 144 |
-
# Update current_simulated_global_step to a valid value
|
| 145 |
-
if st.session_state.all_simulated_steps:
|
| 146 |
-
st.session_state.current_simulated_global_step = st.session_state.all_simulated_steps[0]
|
| 147 |
-
else: # 理论上不会到这里,因为上面保证了至少有[0] Theoretically won't reach here as [0] is guaranteed above
|
| 148 |
-
st.session_state.current_simulated_global_step = 0
|
| 149 |
-
st.rerun() # 重新运行以更新UI中的步骤滑块 Rerun to update step slider in UI
|
| 150 |
-
|
| 151 |
-
except Exception as e:
|
| 152 |
-
st.error(f"生成示例数据失败: {e}")
|
| 153 |
-
st.exception(e)
|
| 154 |
-
st.session_state.generated_data_sources_map = None
|
| 155 |
-
else:
|
| 156 |
-
st.warning("请先选择一个组件类型。")
|
| 157 |
-
|
| 158 |
-
st.session_state.component_specific_config_str = st.text_area(
|
| 159 |
-
"组件特定配置 (JSON)", value=st.session_state.component_specific_config_str, height=100
|
| 160 |
-
)
|
| 161 |
-
|
| 162 |
-
if st.button("🚀 实例化组件", type="primary"):
|
| 163 |
-
if SelectedVisualizerClass and st.session_state.component_instance_id and st.session_state.generated_data_sources_map:
|
| 164 |
-
try:
|
| 165 |
-
specific_config = json.loads(st.session_state.component_specific_config_str)
|
| 166 |
-
st.session_state.active_visualizer_instance = SelectedVisualizerClass(
|
| 167 |
-
component_instance_id=st.session_state.component_instance_id,
|
| 168 |
-
trial_root_path=Path(st.session_state.trial_root_path_str),
|
| 169 |
-
data_sources_map=st.session_state.generated_data_sources_map,
|
| 170 |
-
component_specific_config=specific_config
|
| 171 |
-
)
|
| 172 |
-
st.success(f"组件 '{st.session_state.component_instance_id}' 已实例化。")
|
| 173 |
-
active_viz_instance_for_load = st.session_state.active_visualizer_instance
|
| 174 |
-
active_viz_instance_for_load.load_data()
|
| 175 |
-
|
| 176 |
-
# 从组件加载数据后获取实际的all_available_steps
|
| 177 |
-
# Get actual all_available_steps after component loads data
|
| 178 |
-
if hasattr(active_viz_instance_for_load, '_all_available_steps') and active_viz_instance_for_load._all_available_steps:
|
| 179 |
-
st.session_state.all_simulated_steps = active_viz_instance_for_load._all_available_steps
|
| 180 |
-
if st.session_state.current_simulated_global_step not in st.session_state.all_simulated_steps:
|
| 181 |
-
st.session_state.current_simulated_global_step = st.session_state.all_simulated_steps[0]
|
| 182 |
-
|
| 183 |
-
active_viz_instance_for_load.configure_global_step_interaction(
|
| 184 |
-
current_step=st.session_state.current_simulated_global_step,
|
| 185 |
-
all_available_steps=st.session_state.all_simulated_steps,
|
| 186 |
-
on_step_change_request_callback=lambda step: st.session_state.update({"current_simulated_global_step": step})
|
| 187 |
-
)
|
| 188 |
-
st.rerun() # 确保UI更新 Ensure UI updates
|
| 189 |
-
|
| 190 |
-
except Exception as e:
|
| 191 |
-
st.error(f"实例化组件失败: {e}")
|
| 192 |
-
st.exception(e)
|
| 193 |
-
st.session_state.active_visualizer_instance = None
|
| 194 |
-
else:
|
| 195 |
-
st.warning("请先选择组件类型,输入实例ID,并生成示例数据。")
|
| 196 |
-
|
| 197 |
-
st.header("组件预览与交互")
|
| 198 |
-
active_viz_instance: Optional[VisualizationComponent] = st.session_state.active_visualizer_instance
|
| 199 |
-
|
| 200 |
-
if active_viz_instance:
|
| 201 |
-
st.markdown(f"**当前活动组件:** `{active_viz_instance.component_instance_id}` "
|
| 202 |
-
f"(类型: `{SelectedVisualizerClass.get_display_name() if SelectedVisualizerClass else 'N/A'}`)")
|
| 203 |
-
st.markdown(f"**Trial根路径:** `{active_viz_instance.trial_root_path}`")
|
| 204 |
-
|
| 205 |
-
st.markdown("---")
|
| 206 |
-
st.subheader("全局步骤模拟")
|
| 207 |
-
col_step1, col_step2 = st.columns([3,1])
|
| 208 |
-
|
| 209 |
-
# --- 全局步骤模拟 (FIXED RangeError) ---
|
| 210 |
-
# --- Global Step Simulation (FIXED RangeError) ---
|
| 211 |
-
current_step_for_ui = st.session_state.current_simulated_global_step
|
| 212 |
-
all_steps_for_ui = st.session_state.all_simulated_steps
|
| 213 |
-
|
| 214 |
-
# 确保 current_step_for_ui 在 all_steps_for_ui 中 (如果 all_steps_for_ui 非空)
|
| 215 |
-
# Ensure current_step_for_ui is in all_steps_for_ui (if all_steps_for_ui is not empty)
|
| 216 |
-
if all_steps_for_ui and current_step_for_ui not in all_steps_for_ui:
|
| 217 |
-
# 尝试寻找最近的,或者直接用第一个/最后一个
|
| 218 |
-
# Try to find the closest, or just use the first/last
|
| 219 |
-
current_step_for_ui = min(all_steps_for_ui, key=lambda x:abs(x-current_step_for_ui)) if all_steps_for_ui else 0
|
| 220 |
-
# st.session_state.current_simulated_global_step = current_step_for_ui # 避免在渲染中直接修改会话状态 Avoid direct session state modification in render path
|
| 221 |
-
|
| 222 |
-
with col_step1:
|
| 223 |
-
if all_steps_for_ui:
|
| 224 |
-
if len(all_steps_for_ui) == 1:
|
| 225 |
-
st.markdown(f"当前模拟全局步骤: **{all_steps_for_ui[0]}** (只有一步可用)")
|
| 226 |
-
# 如果只有一步,确保会话状态也正确
|
| 227 |
-
# If only one step, ensure session state is also correct
|
| 228 |
-
if st.session_state.current_simulated_global_step != all_steps_for_ui[0]:
|
| 229 |
-
st.session_state.current_simulated_global_step = all_steps_for_ui[0]
|
| 230 |
-
# st.rerun() # 可能会导致循环,让 configure_global_step_interaction 处理 Might cause loop, let configure_global_step_interaction handle
|
| 231 |
-
new_sim_step = all_steps_for_ui[0] # 保持一致 Keep consistent
|
| 232 |
-
else: # 多于一个步骤 More than one step
|
| 233 |
-
new_sim_step = st.select_slider(
|
| 234 |
-
"当前模拟全局步骤",
|
| 235 |
-
options=all_steps_for_ui,
|
| 236 |
-
value=current_step_for_ui, # 使用已验证的值 Use validated value
|
| 237 |
-
key="sim_step_slider_corrected"
|
| 238 |
-
)
|
| 239 |
-
else: # 没有从数据中解析到步骤 No steps parsed from data
|
| 240 |
-
new_sim_step = st.number_input(
|
| 241 |
-
"当前模拟全局步骤 (无可用步骤)",
|
| 242 |
-
value=current_step_for_ui,
|
| 243 |
-
key="sim_step_input_empty_corrected"
|
| 244 |
-
)
|
| 245 |
-
|
| 246 |
-
# 如果用户通过UI更改了步骤,则更新会话状态
|
| 247 |
-
# If user changed step via UI, update session state
|
| 248 |
-
if new_sim_step != st.session_state.current_simulated_global_step:
|
| 249 |
-
st.session_state.current_simulated_global_step = new_sim_step
|
| 250 |
-
# st.rerun() # select_slider/number_input 通常会在值变化时自动 rerun
|
| 251 |
-
|
| 252 |
-
# 每次渲染都更新组件的步骤信息
|
| 253 |
-
# Update component's step info on every render
|
| 254 |
-
active_viz_instance.configure_global_step_interaction(
|
| 255 |
-
current_step=st.session_state.current_simulated_global_step,
|
| 256 |
-
all_available_steps=all_steps_for_ui, # 使用从数据加载的步骤 Use steps loaded from data
|
| 257 |
-
on_step_change_request_callback=lambda step: st.session_state.update({"current_simulated_global_step": step}) # 更新会话状态,Streamlit会自动rerun
|
| 258 |
-
)
|
| 259 |
-
|
| 260 |
-
with col_step2:
|
| 261 |
-
if st.button("🔄 重新加载数据"):
|
| 262 |
-
try:
|
| 263 |
-
active_viz_instance.load_data()
|
| 264 |
-
st.toast("组件数据已重新加载。")
|
| 265 |
-
# 重新加载数据后,可能需要更新 all_simulated_steps
|
| 266 |
-
# After reloading data, all_simulated_steps might need an update
|
| 267 |
-
if hasattr(active_viz_instance, '_all_available_steps') and active_viz_instance._all_available_steps:
|
| 268 |
-
st.session_state.all_simulated_steps = active_viz_instance._all_available_steps
|
| 269 |
-
# 确保当前步骤仍然有效
|
| 270 |
-
# Ensure current step is still valid
|
| 271 |
-
if st.session_state.current_simulated_global_step not in st.session_state.all_simulated_steps:
|
| 272 |
-
st.session_state.current_simulated_global_step = st.session_state.all_simulated_steps[0] if st.session_state.all_simulated_steps else 0
|
| 273 |
-
|
| 274 |
-
active_viz_instance.configure_global_step_interaction( # 再次配置以防步骤列表变化 Reconfigure in case step list changed
|
| 275 |
-
current_step=st.session_state.current_simulated_global_step,
|
| 276 |
-
all_available_steps=st.session_state.all_simulated_steps,
|
| 277 |
-
on_step_change_request_callback=lambda step: st.session_state.update({"current_simulated_global_step": step})
|
| 278 |
-
)
|
| 279 |
-
st.rerun() # 强制刷新UI Force UI refresh
|
| 280 |
-
except Exception as e:
|
| 281 |
-
st.error(f"重新加载数据失败: {e}")
|
| 282 |
-
|
| 283 |
-
st.markdown("---")
|
| 284 |
-
st.subheader("渲染输出")
|
| 285 |
-
try:
|
| 286 |
-
with st.container(border=True):
|
| 287 |
-
active_viz_instance.render()
|
| 288 |
-
except Exception as e:
|
| 289 |
-
st.error(f"渲染组件 '{active_viz_instance.component_instance_id}' 时出错: {e}")
|
| 290 |
-
st.exception(e)
|
| 291 |
-
else:
|
| 292 |
-
st.info("请在侧边栏中选择一个组件类型,生成示例数据,然后点击“实例化组件”以开始调试。")
|
| 293 |
-
|
| 294 |
-
st.sidebar.markdown("---")
|
| 295 |
-
st.sidebar.caption(f"IDE 会话临时路径: {st.session_state.trial_root_path_str}")
|
| 296 |
-
if st.sidebar.button("清理当前会话的临时Trial目录"):
|
| 297 |
-
cleanup_temp_dir(st.session_state.trial_root_path_str)
|
| 298 |
-
st.session_state.trial_root_path_str = tempfile.mkdtemp(prefix="flowillower_ide_trial_")
|
| 299 |
-
st.session_state.active_visualizer_instance = None
|
| 300 |
-
st.session_state.generated_data_sources_map = None
|
| 301 |
-
st.session_state.all_simulated_steps = []
|
| 302 |
-
st.session_state.current_simulated_global_step = 0
|
| 303 |
-
st.rerun()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/visualizers/scalar_dashboard_visualizer.py
DELETED
|
@@ -1,333 +0,0 @@
|
|
| 1 |
-
# src/visualizers/scalar_dashboard_visualizer.py
|
| 2 |
-
import streamlit as st
|
| 3 |
-
import pandas as pd
|
| 4 |
-
import plotly.graph_objects as go
|
| 5 |
-
import plotly.express as px
|
| 6 |
-
import tomli
|
| 7 |
-
import tomli_w
|
| 8 |
-
from pathlib import Path
|
| 9 |
-
from typing import Dict, Any, Optional, List, Tuple
|
| 10 |
-
|
| 11 |
-
from .base_visualizer import VisualizationComponent, register_visualizer
|
| 12 |
-
|
| 13 |
-
@register_visualizer(name="scalar_metrics_dashboard")
|
| 14 |
-
class ScalarMetricsDashboardVisualizer(VisualizationComponent):
|
| 15 |
-
"""
|
| 16 |
-
一个用于显示多个标量指标(每个指标可能包含多个track)的仪表盘组件。
|
| 17 |
-
它会为每个指标在选定的global_step显示st.metric摘要,并绘制一个Plotly折线图。
|
| 18 |
-
A dashboard component to display multiple scalar metrics, each potentially with multiple tracks.
|
| 19 |
-
It shows st.metric summaries for the selected global_step and a Plotly line chart for each metric.
|
| 20 |
-
"""
|
| 21 |
-
|
| 22 |
-
_raw_data: Optional[pd.DataFrame] = None
|
| 23 |
-
_processed_metrics_data: Dict[str, pd.DataFrame] = None
|
| 24 |
-
|
| 25 |
-
DEFAULT_CHARTS_PER_ROW = 2
|
| 26 |
-
|
| 27 |
-
def __init__(self,
|
| 28 |
-
component_instance_id: str,
|
| 29 |
-
trial_root_path: Path,
|
| 30 |
-
data_sources_map: Dict[str, Dict[str, Any]],
|
| 31 |
-
component_specific_config: Dict[str, Any] = None):
|
| 32 |
-
super().__init__(component_instance_id, trial_root_path, data_sources_map, component_specific_config)
|
| 33 |
-
self._raw_data = None
|
| 34 |
-
self._processed_metrics_data = {}
|
| 35 |
-
self.load_component_config()
|
| 36 |
-
|
| 37 |
-
self.charts_per_row = self.config.get("charts_per_row", self.DEFAULT_CHARTS_PER_ROW)
|
| 38 |
-
self.chart_height = self.config.get("chart_height", 400)
|
| 39 |
-
|
| 40 |
-
@classmethod
|
| 41 |
-
def can_handle_data_types(cls, data_type_names: List[str]) -> bool:
|
| 42 |
-
return "multi_metric_multi_track_scalars" in data_type_names
|
| 43 |
-
|
| 44 |
-
@classmethod
|
| 45 |
-
def generate_example_data(cls, example_data_path: Path, # This path is like .../trial_root/example_assets_for_ide
|
| 46 |
-
data_sources_config: Optional[Dict[str, Dict[str, Any]]] = None
|
| 47 |
-
) -> Dict[str, Dict[str, Any]]:
|
| 48 |
-
example_data_path.mkdir(parents=True, exist_ok=True)
|
| 49 |
-
metrics_file_name = "example_scalar_metrics.toml"
|
| 50 |
-
# 文件实际写入位置: example_data_path / metrics_file_name
|
| 51 |
-
# Actual file write location: example_data_path / metrics_file_name
|
| 52 |
-
metrics_file_full_path = example_data_path / metrics_file_name
|
| 53 |
-
|
| 54 |
-
data_points = []
|
| 55 |
-
for step in range(20):
|
| 56 |
-
data_points.append({"global_step": step, "track": "train", "loss": 1.0 / (step + 1) + 0.1, "accuracy": 0.6 + step * 0.015})
|
| 57 |
-
data_points.append({"global_step": step, "track": "validation", "loss": 1.0 / (step + 1) + 0.2, "accuracy": 0.55 + step * 0.01})
|
| 58 |
-
if step % 5 == 0:
|
| 59 |
-
data_points.append({"global_step": step, "track": "system", "learning_rate": 0.001 * (0.9**step)})
|
| 60 |
-
|
| 61 |
-
try:
|
| 62 |
-
with open(metrics_file_full_path, "wb") as f:
|
| 63 |
-
tomli_w.dump({"metrics": data_points}, f)
|
| 64 |
-
except Exception as e:
|
| 65 |
-
st.error(f"生成示例数据失败: {e}")
|
| 66 |
-
raise
|
| 67 |
-
|
| 68 |
-
# *** 修正点 (FIXED POINT) ***
|
| 69 |
-
# 返回的路径应该是相对于 trial_root_path 的。
|
| 70 |
-
# The returned path should be relative to trial_root_path.
|
| 71 |
-
# example_data_path 的父目录是 trial_root_path。
|
| 72 |
-
# The parent of example_data_path is trial_root_path in the IDE's context.
|
| 73 |
-
# 所以,相对路径是 example_data_path 的名称(即 "example_assets_for_ide")加上文件名。
|
| 74 |
-
# So, the relative path is the name of example_data_path (i.e., "example_assets_for_ide") plus the filename.
|
| 75 |
-
# path_relative_to_trial_root = example_data_path.name / metrics_file_name
|
| 76 |
-
# 更稳健的方式是,如果 example_data_path 是绝对路径,而我们需要相对于 trial_root_path 的路径,
|
| 77 |
-
# 并且我们知道 trial_root_path 是 example_data_path 的父目录(或更早的祖先)。
|
| 78 |
-
# A more robust way, if example_data_path is absolute, and we need path relative to trial_root_path,
|
| 79 |
-
# and we know trial_root_path is a parent (or earlier ancestor) of example_data_path.
|
| 80 |
-
# 在IDE的上下文中,example_data_path = trial_root_path / "example_assets_for_ide"
|
| 81 |
-
# In the IDE's context, example_data_path = trial_root_path / "example_assets_for_ide"
|
| 82 |
-
# 所以,相对于 trial_root_path 的路径就是 "example_assets_for_ide" / metrics_file_name
|
| 83 |
-
# So, path relative to trial_root_path is "example_assets_for_ide" / metrics_file_name
|
| 84 |
-
|
| 85 |
-
path_for_manifest = Path(example_data_path.name) / metrics_file_name
|
| 86 |
-
|
| 87 |
-
return {
|
| 88 |
-
"main_metrics_source": {
|
| 89 |
-
"asset_id": "example_metrics_dashboard_data",
|
| 90 |
-
"data_type": "multi_metric_multi_track_scalars",
|
| 91 |
-
"path": str(path_for_manifest), # 使用修正后的相对路径 Use the corrected relative path
|
| 92 |
-
"display_name": "示例综合指标数据 (Example Comprehensive Metrics)"
|
| 93 |
-
}
|
| 94 |
-
}
|
| 95 |
-
|
| 96 |
-
def load_data(self) -> None:
|
| 97 |
-
data_asset_path = self._get_data_asset_path("main_metrics_source")
|
| 98 |
-
if data_asset_path is None or not data_asset_path.exists():
|
| 99 |
-
st.warning(f"组件 {self.component_instance_id}: 未找到数据源 'main_metrics_source' 或路径无效: {data_asset_path}")
|
| 100 |
-
self._raw_data = pd.DataFrame()
|
| 101 |
-
self._processed_metrics_data = {}
|
| 102 |
-
return
|
| 103 |
-
|
| 104 |
-
try:
|
| 105 |
-
with open(data_asset_path, "rb") as f:
|
| 106 |
-
data = tomli.load(f)
|
| 107 |
-
|
| 108 |
-
metrics_list = data.get("metrics", [])
|
| 109 |
-
if not metrics_list:
|
| 110 |
-
self._raw_data = pd.DataFrame()
|
| 111 |
-
else:
|
| 112 |
-
self._raw_data = pd.DataFrame(metrics_list)
|
| 113 |
-
|
| 114 |
-
self._process_raw_data()
|
| 115 |
-
|
| 116 |
-
except Exception as e:
|
| 117 |
-
st.error(f"组件 {self.component_instance_id}: 加载数据 '{data_asset_path}' 失败: {e}")
|
| 118 |
-
self._raw_data = pd.DataFrame()
|
| 119 |
-
self._processed_metrics_data = {}
|
| 120 |
-
|
| 121 |
-
def _process_raw_data(self) -> None:
|
| 122 |
-
self._processed_metrics_data = {}
|
| 123 |
-
if self._raw_data is None or self._raw_data.empty:
|
| 124 |
-
return
|
| 125 |
-
|
| 126 |
-
if "global_step" not in self._raw_data.columns:
|
| 127 |
-
st.warning(f"组件 {self.component_instance_id}: 数据缺少 'global_step' 列。")
|
| 128 |
-
return
|
| 129 |
-
|
| 130 |
-
potential_metric_cols = [
|
| 131 |
-
col for col in self._raw_data.columns if col not in ["global_step", "track"]
|
| 132 |
-
]
|
| 133 |
-
|
| 134 |
-
for metric_col_name in potential_metric_cols:
|
| 135 |
-
metric_df_cols = ["global_step", metric_col_name]
|
| 136 |
-
if "track" in self._raw_data.columns:
|
| 137 |
-
metric_df_cols.append("track")
|
| 138 |
-
|
| 139 |
-
# 确保所有需要的列都存在于self._raw_data中
|
| 140 |
-
# Ensure all needed columns exist in self._raw_data
|
| 141 |
-
if not all(col in self._raw_data.columns for col in metric_df_cols):
|
| 142 |
-
# st.warning(f"组件 {self.component_instance_id}: 指标 '{metric_col_name}' 的原始数据缺少某些列: {metric_df_cols}")
|
| 143 |
-
continue
|
| 144 |
-
|
| 145 |
-
metric_df = self._raw_data[metric_df_cols].copy()
|
| 146 |
-
|
| 147 |
-
if "track" not in metric_df.columns: # 如果原始数据就没有track列
|
| 148 |
-
metric_df["track"] = "default"
|
| 149 |
-
|
| 150 |
-
metric_df.rename(columns={metric_col_name: "value"}, inplace=True)
|
| 151 |
-
metric_df["value"] = pd.to_numeric(metric_df["value"], errors='coerce')
|
| 152 |
-
metric_df["global_step"] = pd.to_numeric(metric_df["global_step"], errors='coerce')
|
| 153 |
-
metric_df.dropna(subset=["value", "global_step"], inplace=True)
|
| 154 |
-
|
| 155 |
-
if not metric_df.empty:
|
| 156 |
-
metric_df = metric_df.sort_values(by=["track", "global_step"]).reset_index(drop=True)
|
| 157 |
-
self._processed_metrics_data[metric_col_name] = metric_df
|
| 158 |
-
|
| 159 |
-
if self._all_available_steps is None and not self._raw_data.empty and "global_step" in self._raw_data.columns:
|
| 160 |
-
valid_steps = pd.to_numeric(self._raw_data["global_step"], errors='coerce').dropna().astype(int).unique()
|
| 161 |
-
self._all_available_steps = sorted(list(valid_steps))
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
def _render_metric_summary(self, metric_name: str, metric_df: pd.DataFrame, target_step: Optional[int]):
|
| 165 |
-
if target_step is None and self._all_available_steps: # 如果target_step是None,默认用最后一个step
|
| 166 |
-
target_step = self._all_available_steps[-1]
|
| 167 |
-
elif target_step is None or not self._all_available_steps:
|
| 168 |
-
st.metric(label=f"{metric_name}", value="无可用步骤", delta=None)
|
| 169 |
-
return
|
| 170 |
-
|
| 171 |
-
actual_display_step = self._get_closest_available_step(target_step)
|
| 172 |
-
if actual_display_step is None:
|
| 173 |
-
st.metric(label=f"{metric_name}", value="无数据", delta=None)
|
| 174 |
-
return
|
| 175 |
-
|
| 176 |
-
all_tracks = sorted(list(metric_df["track"].unique()))
|
| 177 |
-
num_tracks = len(all_tracks)
|
| 178 |
-
if num_tracks == 0: return
|
| 179 |
-
|
| 180 |
-
cols = st.columns(num_tracks) if num_tracks > 1 else [st.container()]
|
| 181 |
-
|
| 182 |
-
for idx, track_name in enumerate(all_tracks):
|
| 183 |
-
with cols[idx if num_tracks > 1 else 0]:
|
| 184 |
-
track_data = metric_df[metric_df["track"] == track_name]
|
| 185 |
-
if track_data.empty:
|
| 186 |
-
st.metric(label=f"{metric_name} ({track_name})", value="无数据", delta=None)
|
| 187 |
-
continue
|
| 188 |
-
|
| 189 |
-
current_value = None
|
| 190 |
-
delta_value = None
|
| 191 |
-
step_for_current_value = actual_display_step
|
| 192 |
-
|
| 193 |
-
current_step_data = track_data[track_data["global_step"] == step_for_current_value]
|
| 194 |
-
if current_step_data.empty:
|
| 195 |
-
prev_steps_for_track = track_data[track_data["global_step"] <= step_for_current_value]["global_step"]
|
| 196 |
-
if not prev_steps_for_track.empty:
|
| 197 |
-
step_for_current_value = prev_steps_for_track.max()
|
| 198 |
-
current_step_data = track_data[track_data["global_step"] == step_for_current_value]
|
| 199 |
-
|
| 200 |
-
if not current_step_data.empty:
|
| 201 |
-
current_value = current_step_data["value"].iloc[0]
|
| 202 |
-
prev_steps_for_delta = track_data[track_data["global_step"] < step_for_current_value]["global_step"]
|
| 203 |
-
if not prev_steps_for_delta.empty:
|
| 204 |
-
step_for_prev_value = prev_steps_for_delta.max()
|
| 205 |
-
prev_value_data = track_data[track_data["global_step"] == step_for_prev_value]
|
| 206 |
-
if not prev_value_data.empty:
|
| 207 |
-
prev_value = prev_value_data["value"].iloc[0]
|
| 208 |
-
delta_value = current_value - prev_value
|
| 209 |
-
|
| 210 |
-
metric_label = f"{metric_name} ({track_name})"
|
| 211 |
-
if step_for_current_value != target_step and current_value is not None: # 仅当找到的值的步骤与目标步骤不同时才显示
|
| 212 |
-
metric_label += f" @S{int(step_for_current_value)}"
|
| 213 |
-
|
| 214 |
-
st.metric(
|
| 215 |
-
label=metric_label,
|
| 216 |
-
value=f"{current_value:.4f}" if current_value is not None else "无数据",
|
| 217 |
-
delta=f"{delta_value:.4f}" if delta_value is not None and current_value is not None else None,
|
| 218 |
-
)
|
| 219 |
-
|
| 220 |
-
def _render_plotly_chart(self, metric_name: str, metric_df: pd.DataFrame, chart_key: str):
|
| 221 |
-
fig = go.Figure()
|
| 222 |
-
all_tracks = sorted(list(metric_df["track"].unique()))
|
| 223 |
-
colors = px.colors.qualitative.Plotly
|
| 224 |
-
|
| 225 |
-
for i, track_name in enumerate(all_tracks):
|
| 226 |
-
track_data = metric_df[metric_df["track"] == track_name]
|
| 227 |
-
fig.add_trace(go.Scatter(
|
| 228 |
-
x=track_data["global_step"],
|
| 229 |
-
y=track_data["value"],
|
| 230 |
-
mode="lines+markers",
|
| 231 |
-
name=track_name,
|
| 232 |
-
line=dict(color=colors[i % len(colors)]),
|
| 233 |
-
marker=dict(size=6, color=colors[i % len(colors)], line=dict(width=1, color="white")),
|
| 234 |
-
customdata=track_data[["global_step", "value", "track"]],
|
| 235 |
-
hovertemplate="<b>%{customdata[2]}</b><br>Step: %{customdata[0]}<br>Value: %{customdata[1]:.4f}<extra></extra>"
|
| 236 |
-
))
|
| 237 |
-
|
| 238 |
-
current_step_to_highlight = self._get_closest_available_step(self._current_global_step)
|
| 239 |
-
if current_step_to_highlight is not None:
|
| 240 |
-
fig.add_vline(
|
| 241 |
-
x=current_step_to_highlight,
|
| 242 |
-
line_width=1.5, line_dash="solid", line_color="firebrick", opacity=0.7
|
| 243 |
-
)
|
| 244 |
-
|
| 245 |
-
fig.update_layout(
|
| 246 |
-
xaxis_title="Global Step",
|
| 247 |
-
yaxis_title=metric_name,
|
| 248 |
-
height=self.chart_height,
|
| 249 |
-
margin=dict(l=10, r=10, t=30, b=10),
|
| 250 |
-
showlegend=len(all_tracks) > 1,
|
| 251 |
-
hovermode="closest",
|
| 252 |
-
)
|
| 253 |
-
|
| 254 |
-
event_data = st.plotly_chart(
|
| 255 |
-
fig,
|
| 256 |
-
use_container_width=True,
|
| 257 |
-
key=chart_key,
|
| 258 |
-
on_select="rerun"
|
| 259 |
-
)
|
| 260 |
-
|
| 261 |
-
current_selection = st.session_state.get(chart_key, {}).get("selection")
|
| 262 |
-
if current_selection and current_selection.get("points"):
|
| 263 |
-
clicked_point = current_selection["points"][0]
|
| 264 |
-
if "customdata" in clicked_point and isinstance(clicked_point["customdata"], list):
|
| 265 |
-
clicked_global_step = int(clicked_point["customdata"][0])
|
| 266 |
-
last_clicked_step_key = f"{chart_key}_last_clicked_step"
|
| 267 |
-
if st.session_state.get(last_clicked_step_key) != clicked_global_step:
|
| 268 |
-
st.session_state[last_clicked_step_key] = clicked_global_step
|
| 269 |
-
self._request_global_step_change(clicked_global_step)
|
| 270 |
-
elif current_selection and not current_selection.get("points"):
|
| 271 |
-
st.session_state[f"{chart_key}_last_clicked_step"] = None
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
def render_settings_ui(self):
|
| 275 |
-
st.markdown("##### 组件设置 (Component Settings)")
|
| 276 |
-
new_charts_per_row = st.slider(
|
| 277 |
-
"每行图表数 (Charts per row)", 1, 4, self.charts_per_row,
|
| 278 |
-
key=f"{self.component_instance_id}_charts_per_row"
|
| 279 |
-
)
|
| 280 |
-
if new_charts_per_row != self.charts_per_row:
|
| 281 |
-
self.charts_per_row = new_charts_per_row
|
| 282 |
-
self.config["charts_per_row"] = new_charts_per_row
|
| 283 |
-
self.save_component_config()
|
| 284 |
-
st.rerun()
|
| 285 |
-
|
| 286 |
-
new_chart_height = st.number_input(
|
| 287 |
-
"图表高度 (Chart Height)", min_value=200, max_value=1000, step=50,
|
| 288 |
-
value=self.chart_height,
|
| 289 |
-
key=f"{self.component_instance_id}_chart_height"
|
| 290 |
-
)
|
| 291 |
-
if new_chart_height != self.chart_height:
|
| 292 |
-
self.chart_height = new_chart_height
|
| 293 |
-
self.config["chart_height"] = new_chart_height
|
| 294 |
-
self.save_component_config()
|
| 295 |
-
st.rerun()
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
def render(self) -> None:
|
| 299 |
-
if self._processed_metrics_data is None or not self._processed_metrics_data:
|
| 300 |
-
if self._raw_data is None: # 尝试加载一次
|
| 301 |
-
self.load_data()
|
| 302 |
-
# 再次检查
|
| 303 |
-
if self._processed_metrics_data is None or not self._processed_metrics_data:
|
| 304 |
-
st.info(f"组件 {self.component_instance_id}: 没有处理好的指标数据可供显示。请先加载数据或生成示例数据。")
|
| 305 |
-
st.caption("如果已生成示例数据但仍看到此消息,请检查数据路径和格式是否正确。If example data was generated but you still see this, check data paths and format.")
|
| 306 |
-
return
|
| 307 |
-
|
| 308 |
-
with st.expander("图表显示设置 (Chart Display Settings)", expanded=False):
|
| 309 |
-
self.render_settings_ui()
|
| 310 |
-
|
| 311 |
-
metric_names_to_display = sorted(list(self._processed_metrics_data.keys()))
|
| 312 |
-
if not metric_names_to_display:
|
| 313 |
-
st.caption("没有可显示的指标。No metrics to display.")
|
| 314 |
-
return
|
| 315 |
-
|
| 316 |
-
num_metrics = len(metric_names_to_display)
|
| 317 |
-
cols_per_row = self.charts_per_row
|
| 318 |
-
|
| 319 |
-
for i in range(0, num_metrics, cols_per_row):
|
| 320 |
-
metric_chunk = metric_names_to_display[i : i + cols_per_row]
|
| 321 |
-
actual_cols_for_this_row = len(metric_chunk)
|
| 322 |
-
chart_cols = st.columns(actual_cols_for_this_row)
|
| 323 |
-
|
| 324 |
-
for j, metric_name in enumerate(metric_chunk):
|
| 325 |
-
with chart_cols[j]:
|
| 326 |
-
metric_df = self._processed_metrics_data[metric_name]
|
| 327 |
-
|
| 328 |
-
with st.container(border=True, height=self.chart_height + 200): # 增加容器高度以容纳metric和图表
|
| 329 |
-
st.subheader(metric_name)
|
| 330 |
-
self._render_metric_summary(metric_name, metric_df, self._current_global_step)
|
| 331 |
-
st.markdown("---")
|
| 332 |
-
chart_key = f"plotly_{self.component_instance_id}_{metric_name}"
|
| 333 |
-
self._render_plotly_chart(metric_name, metric_df, chart_key)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|