File size: 19,284 Bytes
b17b915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c705b37
b17b915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc0dfdc
 
c705b37
b17b915
bc0dfdc
b17b915
bc0dfdc
b17b915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc0dfdc
b17b915
bc0dfdc
b17b915
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# vision_tools.py
# -----------------------------------------------------------------------------
# Veureu — VISION utilities (self-contained)
#  - Image processing and analysis
#  - Object detection and recognition
#  - Face detection and recognition
#  - Scene description
#  - Montage sequence analysis
# -----------------------------------------------------------------------------
from __future__ import annotations


import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"

from dataclasses import dataclass
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple

import json
import logging
import math
import os
import shlex
import subprocess

import numpy as np
import torch
import torchaudio
import torchaudio.transforms as T
from transformers import WhisperProcessor, WhisperForConditionalGeneration
from pyannote.audio import Pipeline as PyannotePipeline
from speechbrain.pretrained import SpeakerRecognition
from pydub import AudioSegment
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_score
from scenedetect import VideoManager, SceneManager
from scenedetect.detectors import ContentDetector

import os, base64, requests, subprocess, contextlib, time

from transformers import AutoProcessor, LlavaForConditionalGeneration
from PIL import Image

from libs.audio_tools_ana_2 import process_audio_for_video

import cv2

try:
    import face_recognition  # type: ignore
except Exception:
    face_recognition = None  # type: ignore

try:
    # Utility wrapper for DeepFace
    from libs.face_utils import FaceRecognizer as DFRecognizer
except Exception:
    try:
        from face_utils import FaceRecognizer as DFRecognizer
    except Exception:
        DFRecognizer = None  # type: ignore

try:
    from deepface import DeepFace
except ImportError:
    DeepFace = None

import easyocr

# -------------------------------- Logging ------------------------------------
log = logging.getLogger("audio_tools")
if not log.handlers:
    h = logging.StreamHandler()
    h.setFormatter(logging.Formatter("[%(levelname)s] %(message)s"))
    log.addHandler(h)
log.setLevel(logging.INFO)

# ============================ UTILS ===========================================
def load_config(path: str = "configs/config_veureu.yaml") -> Dict[str, Any]:
    p = Path(path)
    if not p.exists():
        log.warning("Config file not found: %s (using defaults)", path)
        return {}
    try:
        import yaml
        cfg = yaml.safe_load(p.read_text(encoding="utf-8")) or {}
        cfg["__path__"] = str(p)
        return cfg
    except Exception as e:
        log.error("Failed to read YAML config: %s", e)
        return {}

# ---------------------------- IMAGE EMBEDDING ----------------------------------
class FaceOfImageEmbedding:
    """Preferred backend: `face_recognition`; fallback: DeepFace via libs.face_utils."""
    def __init__(self, deepface_model: str = 'Facenet512'):
        self.use_fr = face_recognition is not None
        self.df = None
        if not self.use_fr and DFRecognizer is not None:
            try:
                self.df = DFRecognizer(model_name=deepface_model)
                log.info("Using DeepFace (%s) as face embedding backend.", deepface_model)
            except Exception as e:
                log.warning("Failed to initialize DeepFace: %s", e)
        elif self.use_fr:
            log.info("Using face_recognition as face embedding backend.")
        else:
            log.error("No face embedding backend available.")

    def encode_image(self, image_path: Path) -> Optional[List[float]]:
        import numpy as np
        try:
            if self.use_fr:
                img = face_recognition.load_image_file(str(image_path))  # type: ignore
                encs = face_recognition.face_encodings(img)
                if encs:
                    # Normalizar cada embedding a norma 1
                    embeddings = [(e / np.linalg.norm(e)).astype(float).tolist() for e in encs]
                    return embeddings
                return None

            if self.df is not None:
                emb = self.df.get_face_embedding_from_path(str(image_path))
                if emb is None:
                    return None
                # Convertir a numpy array y normalizar
                emb = np.array(emb, dtype=float)
                emb = emb / np.linalg.norm(emb)
                return emb.tolist()

        except Exception as e:
            log.debug("Fallo embedding cara %s: %s", image_path, e)

        return None

class FaceAnalyzer:
    """Wrapper sencillo para DeepFace que obtiene edad y género de una imagen."""
    def __init__(self, actions=None):
        if actions is None:
            actions = ["age", "gender"]
        self.actions = actions

    def analyze_image(self, img_path: str) -> Optional[Dict[str, Any]]:
        try:
            result = DeepFace.analyze(img_path=img_path, actions=self.actions)

            # Si DeepFace devuelve una lista (varias caras), tomamos la primera
            if isinstance(result, list) and len(result) > 0:
                result = result[0]

            # Ahora sí podemos acceder a 'age' y 'dominant_gender'
            return {
                "age": result.get("age", "unknown"),
                "gender": result.get("dominant_gender", "unknown")
            }

        except Exception as e:
            log.warning("No se pudo analizar la imagen %s: %s", img_path, e)
            return None

# ----------------------------------- FUNCTIONS -------------------------------------
def map_identities_per_second(frames_per_second, intervals):
    for seg in intervals:
        seg_start = seg["start"]
        seg_end = seg["end"]

        # recolectar identidades de los frames en el rango del segmento
        identities = []
        for f in frames_per_second:
            if seg_start <= f["start"] <= seg_end:
                for face in f.get("faces", []):
                    identities.append(face)

        # contar apariciones
        seg["counts"] = dict(Counter(identities))

    return intervals

def _split_montage(img: np.ndarray, n: int, cfg: Dict[str, Any]) -> List[np.ndarray]:
    vd = cfg.get('vision_describer', {})
    montage_cfg = vd.get('montage', {})
    mode = montage_cfg.get('split_mode', 'horizontal')  # 'horizontal'|'vertical'|'grid'

    h, w = img.shape[:2]
    tiles: List[np.ndarray] = []

    if mode == 'vertical':
        tile_h = h // n
        for i in range(n):
            y0 = i * tile_h; y1 = h if i == n-1 else (i+1) * tile_h
            tiles.append(img[y0:y1, 0:w])
        return tiles

    if mode == 'grid':
        rows = int(montage_cfg.get('rows', 1) or 1)
        cols = int(montage_cfg.get('cols', n) or n)
        assert rows * cols >= n, "grid rows*cols must be >= n"
        tile_h = h // rows; tile_w = w // cols
        k = 0
        for r in range(rows):
            for c in range(cols):
                if k >= n: break
                y0, y1 = r*tile_h, h if (r==rows-1) else (r+1)*tile_h
                x0, x1 = c*tile_w, w if (c==cols-1) else (c+1)*tile_w
                tiles.append(img[y0:y1, x0:x1]); k += 1
        return tiles

    tile_w = w // n
    for i in range(n):
        x0 = i * tile_w; x1 = w if i == n-1 else (i+1) * tile_w
        tiles.append(img[0:h, x0:x1])
    return tiles

def generar_montage(frame_paths: List[str], output_dir: str) -> None:
    output_path = Path(output_dir)
    output_path.mkdir(parents=True, exist_ok=True)
    montage_path = ""

    if frame_paths:
        imgs = [cv2.imread(kf) for kf in frame_paths if os.path.exists(kf)]
        imgs = [img for img in imgs if img is not None]
        print(f"Se encontraron {len(imgs)} imágenes para el montaje.")

        if imgs:
            h = max(img.shape[0] for img in imgs)  # altura máxima
            imgs_resized = [cv2.resize(img, (int(img.shape[1]*h/img.shape[0]), h)) for img in imgs]
            montage = cv2.hconcat(imgs_resized)
            montage_path = os.path.join(output_dir, "keyframes_montage.jpg")
            print(f"Guardando montaje en: {montage_path}")
            cv2.imwrite(montage_path, montage)
            print("Montaje guardado.")
        else:
            print("No se encontraron imágenes válidas para el montaje.")

    return montage_path

def describe_montage_sequence(
    montage_path: str,
    n: int,
    informacion,
    face_identities,
    *,
    config_path: str = 'configs/config_veureu.yaml'
) -> Dict[str, Any]:
    """Describe each sub-image of a montage.

    Inputs
    ------
    montage_path: str
        Path to a composite image made of n sub-ismages placed sequentially.
    n: int
        Number of sub-images to split and describe.
    config_path: str
        Path to YAML with 'vision_describer' configuration (provider and params).
    
    Returns
    -------
    list []: with the descripcion of each image
    """
    
    path_model = "BSC-LT/salamandra-7b-vision"

    processor = AutoProcessor.from_pretrained(path_model)
    device = "cuda" if torch.cuda.is_available() else "cpu"
    dtype = torch.float16 if device == "cuda" else torch.float32
    model = LlavaForConditionalGeneration.from_pretrained(
        path_model,
        torch_dtype=dtype,
        low_cpu_mem_usage=True
    ).to(device)

    img = cv2.imread(montage_path, cv2.IMREAD_COLOR)
    if img is None:
        raise RuntimeError(f"No se puede leer la imagen: {montage_path}")

    cfg = load_config(config_path)
    tiles = _split_montage(img, n, cfg)
    if len(tiles) < n:
        raise RuntimeError(f"Se produjeron {len(tiles)} tiles, se esperaban {n}")

    # Convertir cada tile a PIL Image
    tile_images = [Image.fromarray(cv2.cvtColor(t, cv2.COLOR_BGR2RGB)) for t in tiles]

    sys_prompt = (
        "Ets un expert en narrativa visual. "
        "Descriu la imatge de manera molt breu i senzilla, en català, "
        "explicant només l’acció principal que s’hi veu. "
        "Respon amb una sola frase curta (10–20 paraules com a màxim), "
        "sense afegir detalls innecessaris ni descriure l’entorn."
    )

    all_results = []

    for i in range(len(tile_images)):
        batch = [tile_images[i]]  # lista con un solo tile

        conversation = [
            {"role": "system", "content": sys_prompt},
            {"role": "user", "content": [
                {"type": "image", "image": batch[0]},
                {"type": "text", "text": (
                    f"Descriu la imatge de manera molt breu i senzilla, en català. ")}
            ]}
        ]
        prompt_batch = processor.apply_chat_template(conversation, add_generation_prompt=True)
        
        inputs = processor(images=batch, text=prompt_batch, return_tensors="pt")
        for k, v in inputs.items():
            if v.dtype.is_floating_point:
                inputs[k] = v.to(device, dtype)
            else:
                inputs[k] = v.to(device)
        
        output = model.generate(**inputs, max_new_tokens=1024)
        text = processor.decode(output[0], skip_special_tokens=True)
        lines = text.split("\n")

        desc = ""
        for i, line in enumerate(lines):
            if line.lower().startswith(" assistant"):
                desc = "\n".join(lines[i+1:]).strip()
                break

        all_results.append(desc)
        torch.cuda.empty_cache()

    return all_results

# --------------------------- IMAGES EXTRACTION -----------------------------
def keyframe_conditional_extraction_ana(
    video_path, 
    output_dir, 
    threshold=30.0, 
    offset_frames=10
):
    """
    Detecta cambios de escena en un vídeo, guarda un fotograma por cada cambio,
    devuelve intervalos con start y end basados en los tiempos de los keyframes
    y genera un montaje con todos los keyframes.
    """
    if not os.path.exists(output_dir):
        os.makedirs(output_dir)

    video_manager = VideoManager([video_path])
    scene_manager = SceneManager()
    scene_manager.add_detector(ContentDetector(threshold=threshold))

    video_manager.start()
    scene_manager.detect_scenes(video_manager)

    scene_list = scene_manager.get_scene_list()

    cap = cv2.VideoCapture(video_path)
    fps = cap.get(cv2.CAP_PROP_FPS)
    total_frames = cap.get(cv2.CAP_PROP_FRAME_COUNT)
    video_duration = total_frames / fps

    keyframes = []
    for i, (start_time, end_time) in enumerate(scene_list):
        frame_number = int(start_time.get_frames()) + offset_frames
        cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
        ret, frame = cap.read()
        if ret:
            ts = frame_number / fps
            frame_path = os.path.join(output_dir, f"scene_{i+1:03d}.jpg")
            cv2.imwrite(frame_path, frame)
            keyframes.append({
                "index": i+1,
                "time": round(ts, 2),
                "path": frame_path
            })

    cap.release()
    video_manager.release()

    # Construimos intervalos con start y end
    intervals = []
    for i, kf in enumerate(keyframes):
        start = kf["time"]
        if i < len(keyframes) - 1:
            end = keyframes[i+1]["time"]
        else:
            end = video_duration  # última escena hasta el final
        intervals.append({
            "index": kf["index"],
            "start": start,
            "end": round(end, 2),
            "path": kf["path"]
        })

    return intervals

def keyframe_every_second(
    video_path: str,
    output_dir: str = ".",
    max_frames: Optional[int] = 10000,
) -> List[dict]:
    """
    Extrae un fotograma por cada segundo del video.

    Returns:
        List[dict]: Cada elemento es {"index", "start", "end", "path"}
    """
    out_dir = Path(output_dir)
    out_dir.mkdir(parents=True, exist_ok=True)
    
    cap = cv2.VideoCapture(str(video_path))
    fps = cap.get(cv2.CAP_PROP_FPS) or 25.0
    total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
    duration = total_frames / fps

    frames: List[dict] = []
    idx = 0
    sec = 0.0

    while sec <= duration:
        frame_number = int(sec * fps)
        cap.set(cv2.CAP_PROP_POS_FRAMES, frame_number)
        ret, frame = cap.read()
        if not ret:
            break

        timestamp = frame_number / fps  
        frame_path = out_dir / f"frame_per_second{idx:03d}.jpg"
        cv2.imwrite(str(frame_path), frame)

        frames.append({
            "index": idx + 1,
            "start": round(timestamp, 2),
            "end": None,   # lo completamos después
            "path": str(frame_path),
        })
        
        idx += 1
        sec += 1.0  
        
        if max_frames and idx >= max_frames:
            break

    cap.release()

    # Completar los "end" con el inicio del siguiente frame
    for i in range(len(frames)):
        if i < len(frames) - 1:
            frames[i]["end"] = frames[i+1]["start"]
        else:
            frames[i]["end"] = round(duration, 2)

    return frames

from collections import Counter, defaultdict

# --------------------------- FRAMES PROCESSING -----------------------------
def process_frames(
    frames: List[dict],  # cada elemento es {"index", "start", "end", "path"}
    config: dict,
    face_col=None,
    embedding_model=None,
) -> Tuple[List[dict], List[int]]:
    """
    Procesa keyframes:
    - Detecta caras
    - Genera embeddings con FaceEmbedding
    - Opcionalmente compara con face_col (KNN top-3)
    - Opcionalmente ejecuta OCR
    """

    frame_results = []

    # Crear embedding_model si no se pasa
    if embedding_model is None:
        from libs.vision_tools import FaceOfImageEmbedding
        embedding_model = FaceOfImageEmbedding()

    for idx, frame in enumerate(frames):
        frame_path = frame["path"]

        try:
            raw_faces = embedding_model.encode_image(Path(frame_path))
        except Exception as e:
            print(f"Error procesando {frame_path}: {e}")
            raw_faces = None

        faces = []
        if raw_faces is not None:
            if isinstance(raw_faces[0], list):  # múltiples
                for e in raw_faces:
                    faces.append({"embedding": e})
            else:  # uno solo
                faces.append({"embedding": raw_faces})

        faces_detected = []
        for f in faces:
            embedding = f.get("embedding")
            identity = "Unknown"
            knn = []

            if face_col is not None and embedding is not None:
                try:
                    num_embeddings = face_col.count()
                    if num_embeddings < 1:
                        knn = []
                        identity = "Unknown"

                    else:
                        n_results = min(3, num_embeddings)
                        q = face_col.query(
                            query_embeddings=[embedding],
                            n_results=n_results,
                            include=["metadatas", "distances"]
                        )

                        knn = []
                        metas = q.get("metadatas", [[]])[0]
                        dists = q.get("distances", [[]])[0]
                        for meta, dist in zip(metas, dists):
                            person_id = meta.get("identity", "Unknown") if isinstance(meta, dict) else "Unknown"
                            knn.append({"identity": person_id, "distance": float(dist)})

                        if knn and knn[0]["distance"] < 0.6:
                            identity = knn[0]["identity"]
                        else:
                            identity = "Unknown"

                except Exception as e:
                    print(f"Face KNN failed: {e}")
                    knn = []
                    identity = "Unknown"

            faces_detected.append(identity)

        use_easyocr = True
        if use_easyocr:
            try:
                reader = easyocr.Reader(['en', 'es'], gpu=True)  # Cambiar gpu=False si no hay GPU
                results = reader.readtext(frame_path)
                ocr_text_easyocr = " ".join([text for _, text, _ in results]).strip()

            except Exception as e:
                print(f"OCR error: {e}")

        frame_results.append({
            "id": frame["index"],
            "start": frame["start"],
            "end": frame["end"],
            "image_path": frame_path,
            "faces": faces_detected,
            "ocr": ocr_text_easyocr,
        })

    return frame_results

if __name__ == "__main__":
    import argparse
    ap = argparse.ArgumentParser(description="Veureu — Audio tools (self-contained)")
    ap.add_argument("--video", required=True)
    ap.add_argument("--out", default="results")
    ap.add_argument("--config", default="configs/config_veureu.yaml")
    args = ap.parse_args()

    # Lightweight config loader (only for sample run)
    import yaml
    cfg = {}
    p = Path(args.config)
    if p.exists():
        cfg = yaml.safe_load(p.read_text(encoding="utf-8")) or {}

    out_dir = Path(args.out) / Path(args.video).stem
    out_dir.mkdir(parents=True, exist_ok=True)

    segs, srt = process_audio_for_video(args.video, out_dir, cfg, voice_collection=None)
    print(json.dumps({
        "segments": len(segs),
        "srt": srt
    }, indent=2, ensure_ascii=False))