|
|
"""
|
|
|
Character Detection Module
|
|
|
Integra el trabajo de Ana para detección de personajes mediante:
|
|
|
1. Extracción de caras y embeddings
|
|
|
2. Extracción de voces y embeddings
|
|
|
3. Clustering jerárquico aglomerativo
|
|
|
4. Generación de carpetas por personaje
|
|
|
"""
|
|
|
import cv2
|
|
|
import os
|
|
|
import json
|
|
|
import logging
|
|
|
import shutil
|
|
|
from pathlib import Path
|
|
|
import numpy as np
|
|
|
from scipy.cluster.hierarchy import linkage, fcluster
|
|
|
from collections import Counter
|
|
|
from typing import List, Dict, Any, Tuple
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
|
from deepface import DeepFace
|
|
|
DEEPFACE_AVAILABLE = True
|
|
|
except Exception as e:
|
|
|
DEEPFACE_AVAILABLE = False
|
|
|
logging.warning(f"DeepFace no disponible: {e}")
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
|
|
|
class CharacterDetector:
|
|
|
"""
|
|
|
Detector de personajes que integra el trabajo de Ana.
|
|
|
"""
|
|
|
|
|
|
def __init__(self, video_path: str, output_base: Path, video_name: str = None):
|
|
|
"""
|
|
|
Args:
|
|
|
video_path: Ruta al archivo de vídeo
|
|
|
output_base: Directorio base para guardar resultados (ej: /tmp/temp/video_name)
|
|
|
video_name: Nombre del vídeo (para construir URLs)
|
|
|
"""
|
|
|
self.video_path = video_path
|
|
|
self.output_base = Path(output_base)
|
|
|
self.output_base.mkdir(parents=True, exist_ok=True)
|
|
|
self.video_name = video_name or self.output_base.name
|
|
|
|
|
|
|
|
|
self.faces_dir = self.output_base / "faces"
|
|
|
self.voices_dir = self.output_base / "voices"
|
|
|
self.scenes_dir = self.output_base / "scenes"
|
|
|
|
|
|
for d in [self.faces_dir, self.voices_dir, self.scenes_dir]:
|
|
|
d.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
def extract_faces_embeddings(self, *, start_offset_sec: float = 3.0, extract_every_sec: float = 0.5,
|
|
|
detector_backend: str = 'retinaface', min_face_area: int = 100,
|
|
|
enforce_detection: bool = False) -> List[Dict[str, Any]]:
|
|
|
"""
|
|
|
Extrae caras del vídeo y calcula sus embeddings usando DeepFace directamente.
|
|
|
|
|
|
Returns:
|
|
|
Lista de dicts con {"embeddings": [...], "path": "..."}
|
|
|
"""
|
|
|
if not DEEPFACE_AVAILABLE:
|
|
|
logger.warning("DeepFace no disponible, retornando lista vacía")
|
|
|
return []
|
|
|
|
|
|
logger.info("Extrayendo caras del vídeo con DeepFace...")
|
|
|
|
|
|
extract_every = float(extract_every_sec)
|
|
|
video = cv2.VideoCapture(self.video_path)
|
|
|
fps = int(video.get(cv2.CAP_PROP_FPS))
|
|
|
total_frames = int(video.get(cv2.CAP_PROP_FRAME_COUNT))
|
|
|
frame_interval = int(fps * extract_every)
|
|
|
frame_count = 0
|
|
|
saved_count = 0
|
|
|
start_frame = int(max(0.0, start_offset_sec) * (fps if fps > 0 else 25))
|
|
|
|
|
|
embeddings_caras = []
|
|
|
|
|
|
logger.info(f"Total frames: {total_frames}, FPS: {fps}, Procesando cada {frame_interval} frames")
|
|
|
|
|
|
while True:
|
|
|
ret, frame = video.read()
|
|
|
if not ret:
|
|
|
break
|
|
|
|
|
|
if frame_count < start_frame:
|
|
|
frame_count += 1
|
|
|
continue
|
|
|
|
|
|
if frame_count % frame_interval == 0:
|
|
|
temp_path = self.faces_dir / "temp_frame.jpg"
|
|
|
cv2.imwrite(str(temp_path), frame)
|
|
|
|
|
|
try:
|
|
|
|
|
|
|
|
|
face_objs = DeepFace.represent(
|
|
|
img_path=str(temp_path),
|
|
|
model_name='Facenet512',
|
|
|
detector_backend=detector_backend,
|
|
|
enforce_detection=enforce_detection
|
|
|
)
|
|
|
|
|
|
if face_objs:
|
|
|
for i, face_obj in enumerate(face_objs):
|
|
|
embedding = face_obj['embedding']
|
|
|
facial_area = face_obj.get('facial_area', {})
|
|
|
try:
|
|
|
w = int(facial_area.get('w', 0))
|
|
|
h = int(facial_area.get('h', 0))
|
|
|
if w * h < int(min_face_area):
|
|
|
continue
|
|
|
except Exception:
|
|
|
pass
|
|
|
|
|
|
|
|
|
x = int(facial_area.get('x', 0)); y = int(facial_area.get('y', 0))
|
|
|
w = int(facial_area.get('w', 0)); h = int(facial_area.get('h', 0))
|
|
|
x2 = max(0, x); y2 = max(0, y)
|
|
|
x3 = min(frame.shape[1], x + w); y3 = min(frame.shape[0], y + h)
|
|
|
crop = frame[y2:y3, x2:x3] if (x3 > x2 and y3 > y2) else frame
|
|
|
save_path = self.faces_dir / f"face_{saved_count:04d}.jpg"
|
|
|
cv2.imwrite(str(save_path), crop)
|
|
|
|
|
|
embeddings_caras.append({
|
|
|
"embeddings": embedding,
|
|
|
"path": str(save_path),
|
|
|
"frame": frame_count,
|
|
|
"facial_area": facial_area
|
|
|
})
|
|
|
saved_count += 1
|
|
|
|
|
|
if frame_count % (frame_interval * 10) == 0:
|
|
|
logger.info(f"Progreso: frame {frame_count}/{total_frames}, caras detectadas: {saved_count}")
|
|
|
|
|
|
except Exception as e:
|
|
|
logger.debug(f"No se detectaron caras en frame {frame_count}: {e}")
|
|
|
|
|
|
if temp_path.exists():
|
|
|
os.remove(temp_path)
|
|
|
|
|
|
frame_count += 1
|
|
|
|
|
|
video.release()
|
|
|
logger.info(f"✓ Caras extraídas: {len(embeddings_caras)}")
|
|
|
return embeddings_caras
|
|
|
|
|
|
def extract_voices_embeddings(self) -> List[Dict[str, Any]]:
|
|
|
"""
|
|
|
Extrae voces del vídeo y calcula sus embeddings.
|
|
|
Por ahora retorna lista vacía (funcionalidad opcional).
|
|
|
|
|
|
Returns:
|
|
|
Lista de dicts con {"embeddings": [...], "path": "..."}
|
|
|
"""
|
|
|
logger.info("Extracción de voces deshabilitada temporalmente")
|
|
|
return []
|
|
|
|
|
|
def extract_scenes_embeddings(self) -> List[Dict[str, Any]]:
|
|
|
"""
|
|
|
Extrae escenas clave del vídeo.
|
|
|
Por ahora retorna lista vacía (funcionalidad opcional).
|
|
|
|
|
|
Returns:
|
|
|
Lista de dicts con {"embeddings": [...], "path": "..."}
|
|
|
"""
|
|
|
logger.info("Extracción de escenas deshabilitada temporalmente")
|
|
|
return []
|
|
|
|
|
|
def cluster_faces(self, embeddings_caras: List[Dict], max_groups: int, min_samples: int) -> np.ndarray:
|
|
|
"""
|
|
|
Agrupa caras similares usando clustering jerárquico aglomerativo con selección óptima.
|
|
|
Selecciona automáticamente el mejor número de clusters usando silhouette score.
|
|
|
|
|
|
Args:
|
|
|
embeddings_caras: Lista de embeddings de caras
|
|
|
max_groups: Número máximo de clusters a formar
|
|
|
min_samples: Tamaño mínimo de cluster válido
|
|
|
|
|
|
Returns:
|
|
|
Array de labels (cluster asignado a cada cara, -1 para ruido)
|
|
|
"""
|
|
|
if not embeddings_caras:
|
|
|
return np.array([])
|
|
|
|
|
|
logger.info(f"Clustering {len(embeddings_caras)} caras con max_groups={max_groups}, min_samples={min_samples}")
|
|
|
|
|
|
|
|
|
X = np.array([cara['embeddings'] for cara in embeddings_caras])
|
|
|
|
|
|
if len(X) < min_samples:
|
|
|
|
|
|
return np.full(len(X), -1, dtype=int)
|
|
|
|
|
|
|
|
|
|
|
|
Z = linkage(X, method='average', metric='cosine')
|
|
|
|
|
|
|
|
|
from sklearn.metrics import silhouette_score
|
|
|
best_n_clusters = 2
|
|
|
best_score = -1
|
|
|
|
|
|
max_to_try = min(max_groups, len(X) - 1)
|
|
|
|
|
|
if max_to_try >= 2:
|
|
|
for n_clusters in range(2, max_to_try + 1):
|
|
|
trial_labels = fcluster(Z, t=n_clusters, criterion='maxclust') - 1
|
|
|
|
|
|
trial_counts = Counter(trial_labels)
|
|
|
valid_clusters = sum(1 for count in trial_counts.values() if count >= min_samples)
|
|
|
|
|
|
if valid_clusters >= 2:
|
|
|
try:
|
|
|
score = silhouette_score(X, trial_labels, metric='cosine')
|
|
|
|
|
|
|
|
|
adjusted_score = score - (n_clusters * 0.07)
|
|
|
|
|
|
if adjusted_score > best_score:
|
|
|
best_score = adjusted_score
|
|
|
best_n_clusters = n_clusters
|
|
|
except:
|
|
|
pass
|
|
|
|
|
|
logger.info(f"Clustering óptimo: {best_n_clusters} clusters (de máximo {max_groups}), silhouette: {best_score:.3f}")
|
|
|
labels = fcluster(Z, t=best_n_clusters, criterion='maxclust') - 1
|
|
|
|
|
|
|
|
|
label_counts = Counter(labels)
|
|
|
filtered_labels = []
|
|
|
for lbl in labels:
|
|
|
if label_counts[lbl] >= min_samples:
|
|
|
filtered_labels.append(lbl)
|
|
|
else:
|
|
|
filtered_labels.append(-1)
|
|
|
labels = np.array(filtered_labels, dtype=int)
|
|
|
|
|
|
|
|
|
n_clusters = len(set(labels)) - (1 if -1 in labels else 0)
|
|
|
n_noise = list(labels).count(-1)
|
|
|
|
|
|
logger.info(f"Clusters válidos encontrados: {n_clusters}, Ruido: {n_noise}")
|
|
|
return labels
|
|
|
|
|
|
def create_character_folders(self, embeddings_caras: List[Dict], labels: np.ndarray) -> List[Dict[str, Any]]:
|
|
|
"""
|
|
|
Crea carpetas para cada personaje detectado, valida caras y guarda metadata.
|
|
|
Integra validación con DeepFace para filtrar falsos positivos y detectar género.
|
|
|
|
|
|
Args:
|
|
|
embeddings_caras: Lista de embeddings de caras
|
|
|
labels: Array de labels de clustering
|
|
|
|
|
|
Returns:
|
|
|
Lista de personajes detectados con metadata (solo clusters válidos)
|
|
|
"""
|
|
|
from face_classifier import validate_and_classify_face, FACE_CONFIDENCE_THRESHOLD
|
|
|
|
|
|
characters_validated = []
|
|
|
|
|
|
|
|
|
clusters = {}
|
|
|
for idx, label in enumerate(labels):
|
|
|
if label == -1:
|
|
|
continue
|
|
|
if label not in clusters:
|
|
|
clusters[label] = []
|
|
|
clusters[label].append(idx)
|
|
|
|
|
|
logger.info(f"Procesando {len(clusters)} clusters detectados...")
|
|
|
original_cluster_count = len(clusters)
|
|
|
|
|
|
|
|
|
for cluster_id, face_indices in clusters.items():
|
|
|
char_id = f"char_{cluster_id:02d}"
|
|
|
|
|
|
|
|
|
|
|
|
face_detections = []
|
|
|
for face_idx in face_indices:
|
|
|
face_data = embeddings_caras[face_idx]
|
|
|
facial_area = face_data.get('facial_area', {})
|
|
|
w = facial_area.get('w', 0)
|
|
|
h = facial_area.get('h', 0)
|
|
|
area_score = w * h
|
|
|
|
|
|
face_detections.append({
|
|
|
'index': face_idx,
|
|
|
'score': area_score,
|
|
|
'facial_area': facial_area,
|
|
|
'path': face_data['path']
|
|
|
})
|
|
|
|
|
|
|
|
|
face_detections_sorted = sorted(
|
|
|
face_detections,
|
|
|
key=lambda x: x['score'],
|
|
|
reverse=True
|
|
|
)
|
|
|
|
|
|
if not face_detections_sorted:
|
|
|
logger.info(f"[VALIDATION] ✗ Cluster {char_id}: sense deteccions, eliminant")
|
|
|
continue
|
|
|
|
|
|
|
|
|
best_face = face_detections_sorted[0]
|
|
|
best_face_path = best_face['path']
|
|
|
|
|
|
logger.info(f"[VALIDATION] Cluster {char_id}: validant millor cara (score={best_face['score']:.0f}px²)")
|
|
|
|
|
|
validation = validate_and_classify_face(best_face_path)
|
|
|
|
|
|
if not validation:
|
|
|
logger.info(f"[VALIDATION] ✗ Cluster {char_id}: error en validació, eliminant")
|
|
|
continue
|
|
|
|
|
|
|
|
|
if not validation['is_valid_face'] or validation['face_confidence'] < FACE_CONFIDENCE_THRESHOLD:
|
|
|
logger.info(f"[VALIDATION] ✗ Cluster {char_id}: score baix ({validation['face_confidence']:.2f}), eliminant tot el clúster")
|
|
|
continue
|
|
|
|
|
|
|
|
|
char_dir = self.output_base / char_id
|
|
|
char_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
|
|
|
|
|
total_faces = len(face_detections_sorted)
|
|
|
max_faces_to_show = (total_faces // 2) + 1
|
|
|
face_detections_limited = face_detections_sorted[:max_faces_to_show]
|
|
|
|
|
|
|
|
|
face_files = []
|
|
|
for i, face_det in enumerate(face_detections_limited):
|
|
|
src_path = Path(face_det['path'])
|
|
|
dst_path = char_dir / f"face_{i:03d}.jpg"
|
|
|
if src_path.exists():
|
|
|
shutil.copy(src_path, dst_path)
|
|
|
face_files.append(f"/files/{self.video_name}/{char_id}/face_{i:03d}.jpg")
|
|
|
|
|
|
|
|
|
representative_src = Path(best_face_path)
|
|
|
representative_dst = char_dir / "representative.jpg"
|
|
|
if representative_src.exists():
|
|
|
shutil.copy(representative_src, representative_dst)
|
|
|
|
|
|
|
|
|
cluster_number = int(char_id.split('_')[1]) + 1
|
|
|
character_name = f"Cluster {cluster_number}"
|
|
|
gender = validation['gender']
|
|
|
|
|
|
|
|
|
image_url = f"/files/{self.video_name}/{char_id}/representative.jpg"
|
|
|
|
|
|
character_data = {
|
|
|
"id": char_id,
|
|
|
"name": character_name,
|
|
|
"gender": gender,
|
|
|
"gender_confidence": validation['gender_confidence'],
|
|
|
"face_confidence": validation['face_confidence'],
|
|
|
"man_prob": validation['man_prob'],
|
|
|
"woman_prob": validation['woman_prob'],
|
|
|
"image_path": str(representative_dst),
|
|
|
"image_url": image_url,
|
|
|
"face_files": face_files,
|
|
|
"num_faces": len(face_detections_limited),
|
|
|
"total_faces_detected": total_faces,
|
|
|
"folder": str(char_dir)
|
|
|
}
|
|
|
|
|
|
characters_validated.append(character_data)
|
|
|
|
|
|
logger.info(f"[VALIDATION] ✓ Cluster {char_id}: cara vàlida! "
|
|
|
f"Nom={character_name}, Gender={gender} (conf={validation['gender_confidence']:.2f}), "
|
|
|
f"Mostrant {len(face_detections_limited)}/{total_faces} cares")
|
|
|
|
|
|
|
|
|
eliminated_count = original_cluster_count - len(characters_validated)
|
|
|
logger.info(f"[VALIDATION] Total: {len(characters_validated)} clústers vàlids "
|
|
|
f"(eliminats {eliminated_count} falsos positius)")
|
|
|
|
|
|
return characters_validated
|
|
|
|
|
|
def save_analysis_json(self, embeddings_caras: List[Dict], embeddings_voices: List[Dict],
|
|
|
embeddings_escenas: List[Dict]) -> Path:
|
|
|
"""
|
|
|
Guarda el análisis completo en un archivo JSON.
|
|
|
Similar al analysis.json de Ana.
|
|
|
|
|
|
Returns:
|
|
|
Path al archivo JSON guardado
|
|
|
"""
|
|
|
analysis_data = {
|
|
|
"caras": embeddings_caras,
|
|
|
"voices": embeddings_voices,
|
|
|
"escenas": embeddings_escenas
|
|
|
}
|
|
|
|
|
|
analysis_path = self.output_base / "analysis.json"
|
|
|
|
|
|
try:
|
|
|
with open(analysis_path, "w", encoding="utf-8") as f:
|
|
|
json.dump(analysis_data, f, indent=2, ensure_ascii=False)
|
|
|
logger.info(f"Analysis JSON guardado: {analysis_path}")
|
|
|
except Exception as e:
|
|
|
logger.warning(f"Error al guardar analysis JSON: {e}")
|
|
|
|
|
|
return analysis_path
|
|
|
|
|
|
def detect_characters(self, max_groups: int = 3, min_cluster_size: int = 3,
|
|
|
*, start_offset_sec: float = 3.0, extract_every_sec: float = 0.5) -> Tuple[List[Dict], Path, np.ndarray, List[Dict[str, Any]]]:
|
|
|
"""
|
|
|
Pipeline completo de detección de personajes con clustering jerárquico.
|
|
|
|
|
|
Args:
|
|
|
max_groups: Número máximo de clusters a formar
|
|
|
min_cluster_size: Tamaño mínimo de cluster
|
|
|
|
|
|
Returns:
|
|
|
Tuple de (lista de personajes, path al analysis.json)
|
|
|
"""
|
|
|
|
|
|
embeddings_caras = self.extract_faces_embeddings(start_offset_sec=start_offset_sec, extract_every_sec=extract_every_sec)
|
|
|
|
|
|
|
|
|
embeddings_voices = self.extract_voices_embeddings()
|
|
|
|
|
|
|
|
|
embeddings_escenas = self.extract_scenes_embeddings()
|
|
|
|
|
|
|
|
|
analysis_path = self.save_analysis_json(embeddings_caras, embeddings_voices, embeddings_escenas)
|
|
|
|
|
|
|
|
|
labels = self.cluster_faces(embeddings_caras, max_groups, min_cluster_size)
|
|
|
|
|
|
|
|
|
characters = self.create_character_folders(embeddings_caras, labels)
|
|
|
|
|
|
return characters, analysis_path, labels, embeddings_caras
|
|
|
|
|
|
|
|
|
|
|
|
def detect_characters_from_video(video_path: str, output_base: str,
|
|
|
max_groups: int = 3, min_cluster_size: int = 3,
|
|
|
video_name: str = None,
|
|
|
*, start_offset_sec: float = 3.0, extract_every_sec: float = 0.5) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Función de alto nivel para detectar personajes en un vídeo usando clustering jerárquico.
|
|
|
|
|
|
Args:
|
|
|
video_path: Ruta al vídeo
|
|
|
output_base: Directorio base para guardar resultados
|
|
|
max_groups: Número máximo de clusters a formar
|
|
|
min_cluster_size: Tamaño mínimo de cluster
|
|
|
video_name: Nombre del vídeo (para construir URLs)
|
|
|
|
|
|
Returns:
|
|
|
Dict con resultados: {"characters": [...], "analysis_path": "..."}
|
|
|
"""
|
|
|
detector = CharacterDetector(video_path, Path(output_base), video_name=video_name)
|
|
|
characters, analysis_path, labels, embeddings_caras = detector.detect_characters(max_groups, min_cluster_size,
|
|
|
start_offset_sec=start_offset_sec,
|
|
|
extract_every_sec=extract_every_sec)
|
|
|
|
|
|
return {
|
|
|
"characters": characters,
|
|
|
"analysis_path": str(analysis_path),
|
|
|
"num_characters": len(characters),
|
|
|
"face_labels": labels.tolist() if isinstance(labels, np.ndarray) else list(labels),
|
|
|
"num_face_embeddings": len(embeddings_caras)
|
|
|
}
|
|
|
|