Spaces:
Running
on
Zero
Running
on
Zero
add zero gpu supported inference
Browse files- .gitattributes +1 -1
- app.py +136 -17
.gitattributes
CHANGED
|
@@ -34,4 +34,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 37 |
-
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.pt2 filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -1,13 +1,44 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import onnxruntime as ort
|
| 3 |
import numpy as np
|
|
|
|
|
|
|
| 4 |
from char_tokenizers import GermanCharsTokenizer
|
| 5 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
# Initialize tokenizer
|
| 7 |
TOKENIZER = GermanCharsTokenizer()
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# Model paths
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
"Caro": {
|
| 12 |
"fastpitch": "onnx/caro_fastpitch.onnx",
|
| 13 |
"hifigan": "onnx/caro_hifigan.onnx",
|
|
@@ -18,21 +49,83 @@ MODELS = {
|
|
| 18 |
},
|
| 19 |
}
|
| 20 |
|
| 21 |
-
# Load models
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
|
| 33 |
-
def
|
|
|
|
|
|
|
| 34 |
"""
|
| 35 |
-
Synthesize speech
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
Args:
|
| 38 |
text: Input text to synthesize
|
|
@@ -59,11 +152,11 @@ def synthesize_speech(text: str, voice: str, pace: float = 1.0):
|
|
| 59 |
}
|
| 60 |
|
| 61 |
# Generate spectrogram with FastPitch
|
| 62 |
-
fastpitch_session =
|
| 63 |
spec = fastpitch_session.run(None, inputs)[0]
|
| 64 |
|
| 65 |
# Generate audio with HiFiGAN
|
| 66 |
-
hifigan_session =
|
| 67 |
gan_inputs = {"spec": spec}
|
| 68 |
audio = hifigan_session.run(None, gan_inputs)[0]
|
| 69 |
|
|
@@ -74,14 +167,40 @@ def synthesize_speech(text: str, voice: str, pace: float = 1.0):
|
|
| 74 |
return (sample_rate, audio_array)
|
| 75 |
|
| 76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
# Create Gradio interface
|
| 78 |
with gr.Blocks(title="German TTS - Caro & Karlsson") as demo:
|
| 79 |
gr.Markdown(
|
| 80 |
-
"""
|
| 81 |
# 🎙️ German Text-to-Speech
|
| 82 |
|
| 83 |
Generate German speech using two different voices: **Caro** and **Karlsson**.
|
| 84 |
|
|
|
|
|
|
|
| 85 |
Enter your German text below and select a voice to synthesize speech.
|
| 86 |
"""
|
| 87 |
)
|
|
@@ -96,7 +215,7 @@ with gr.Blocks(title="German TTS - Caro & Karlsson") as demo:
|
|
| 96 |
)
|
| 97 |
|
| 98 |
voice_dropdown = gr.Dropdown(
|
| 99 |
-
choices=
|
| 100 |
)
|
| 101 |
|
| 102 |
pace_slider = gr.Slider(
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import onnxruntime as ort
|
| 3 |
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch._inductor
|
| 6 |
from char_tokenizers import GermanCharsTokenizer
|
| 7 |
|
| 8 |
+
# Try to import spaces for Zero GPU support
|
| 9 |
+
try:
|
| 10 |
+
import spaces
|
| 11 |
+
|
| 12 |
+
HAS_SPACES = True
|
| 13 |
+
except ImportError:
|
| 14 |
+
HAS_SPACES = False
|
| 15 |
+
print("spaces not available, running without Zero GPU support")
|
| 16 |
+
|
| 17 |
# Initialize tokenizer
|
| 18 |
TOKENIZER = GermanCharsTokenizer()
|
| 19 |
|
| 20 |
+
# Check if CUDA is available
|
| 21 |
+
USE_GPU = torch.cuda.is_available()
|
| 22 |
+
DEVICE = "cuda" if USE_GPU else "cpu"
|
| 23 |
+
|
| 24 |
+
print(f"Using device: {DEVICE}")
|
| 25 |
+
print(f"Zero GPU support: {HAS_SPACES}")
|
| 26 |
+
|
| 27 |
# Model paths
|
| 28 |
+
AOT_MODELS = {
|
| 29 |
+
"Caro": {
|
| 30 |
+
"encoder": "aot_package/caro_fastpitch_encoder.pt2",
|
| 31 |
+
"decoder": "aot_package/caro_fastpitch_decoder.pt2",
|
| 32 |
+
"vocoder": "aot_package/caro_hifigan.pt2",
|
| 33 |
+
},
|
| 34 |
+
"Karlsson": {
|
| 35 |
+
"encoder": "aot_package/karlsson_fastpitch_encoder.pt2",
|
| 36 |
+
"decoder": "aot_package/karlsson_fastpitch_decoder.pt2",
|
| 37 |
+
"vocoder": "aot_package/karlsson_hifigan.pt2",
|
| 38 |
+
},
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
+
ONNX_MODELS = {
|
| 42 |
"Caro": {
|
| 43 |
"fastpitch": "onnx/caro_fastpitch.onnx",
|
| 44 |
"hifigan": "onnx/caro_hifigan.onnx",
|
|
|
|
| 49 |
},
|
| 50 |
}
|
| 51 |
|
| 52 |
+
# Load models based on device
|
| 53 |
+
if USE_GPU:
|
| 54 |
+
print("Loading AOT models for GPU...")
|
| 55 |
+
aot_sessions = {}
|
| 56 |
+
for voice_name, paths in AOT_MODELS.items():
|
| 57 |
+
print(f"Loading {voice_name} AOT models...")
|
| 58 |
+
aot_sessions[voice_name] = {
|
| 59 |
+
"encoder": torch._inductor.aoti_load_package(paths["encoder"]),
|
| 60 |
+
"decoder": torch._inductor.aoti_load_package(paths["decoder"]),
|
| 61 |
+
"vocoder": torch._inductor.aoti_load_package(paths["vocoder"]),
|
| 62 |
+
}
|
| 63 |
+
print("AOT models loaded successfully!")
|
| 64 |
+
onnx_sessions = None
|
| 65 |
+
else:
|
| 66 |
+
print("Loading ONNX models for CPU...")
|
| 67 |
+
onnx_sessions = {}
|
| 68 |
+
for voice_name, paths in ONNX_MODELS.items():
|
| 69 |
+
print(f"Loading {voice_name} ONNX models...")
|
| 70 |
+
onnx_sessions[voice_name] = {
|
| 71 |
+
"fastpitch": ort.InferenceSession(paths["fastpitch"]),
|
| 72 |
+
"hifigan": ort.InferenceSession(paths["hifigan"]),
|
| 73 |
+
}
|
| 74 |
+
print("ONNX models loaded successfully!")
|
| 75 |
+
aot_sessions = None
|
| 76 |
|
| 77 |
|
| 78 |
+
def synthesize_speech_aot(
|
| 79 |
+
text: str, voice: str, pace: float = 1.0, pitch_shift: float = 0.0
|
| 80 |
+
):
|
| 81 |
"""
|
| 82 |
+
Synthesize speech using AOT compiled models (GPU).
|
| 83 |
+
|
| 84 |
+
Args:
|
| 85 |
+
text: Input text to synthesize
|
| 86 |
+
voice: Voice to use (Caro or Karlsson)
|
| 87 |
+
pace: Speaking rate (1.0 is normal, <1.0 is slower, >1.0 is faster)
|
| 88 |
+
pitch_shift: Pitch adjustment (0.0 = no change)
|
| 89 |
+
|
| 90 |
+
Returns:
|
| 91 |
+
Tuple of (sample_rate, audio_array)
|
| 92 |
+
"""
|
| 93 |
+
if not text.strip():
|
| 94 |
+
return None
|
| 95 |
+
|
| 96 |
+
# Tokenize text
|
| 97 |
+
tokens = TOKENIZER.encode(text)
|
| 98 |
+
tokens_tensor = torch.tensor([tokens], dtype=torch.int64).to(DEVICE)
|
| 99 |
+
|
| 100 |
+
# Prepare control parameters
|
| 101 |
+
pitch_tensor = torch.zeros_like(tokens_tensor, dtype=torch.float32) + pitch_shift
|
| 102 |
+
pace_tensor = torch.ones_like(tokens_tensor, dtype=torch.float32) * pace
|
| 103 |
+
|
| 104 |
+
with torch.inference_mode():
|
| 105 |
+
# Run encoder to get latent representation and length
|
| 106 |
+
encoder = aot_sessions[voice]["encoder"]
|
| 107 |
+
len_regulated, dec_lens, spk_emb = encoder(
|
| 108 |
+
tokens_tensor, pitch_tensor, pace_tensor
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Run decoder to get mel-spectrogram
|
| 112 |
+
decoder = aot_sessions[voice]["decoder"]
|
| 113 |
+
spec = decoder(len_regulated, dec_lens, spk_emb)
|
| 114 |
+
|
| 115 |
+
# Run vocoder to generate audio waveform
|
| 116 |
+
vocoder = aot_sessions[voice]["vocoder"]
|
| 117 |
+
audio = vocoder(spec)
|
| 118 |
+
|
| 119 |
+
# Convert to numpy and return
|
| 120 |
+
sample_rate = 44100
|
| 121 |
+
audio_array = audio.squeeze().cpu().numpy()
|
| 122 |
+
|
| 123 |
+
return (sample_rate, audio_array)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def synthesize_speech_onnx(text: str, voice: str, pace: float = 1.0):
|
| 127 |
+
"""
|
| 128 |
+
Synthesize speech using ONNX models (CPU).
|
| 129 |
|
| 130 |
Args:
|
| 131 |
text: Input text to synthesize
|
|
|
|
| 152 |
}
|
| 153 |
|
| 154 |
# Generate spectrogram with FastPitch
|
| 155 |
+
fastpitch_session = onnx_sessions[voice]["fastpitch"]
|
| 156 |
spec = fastpitch_session.run(None, inputs)[0]
|
| 157 |
|
| 158 |
# Generate audio with HiFiGAN
|
| 159 |
+
hifigan_session = onnx_sessions[voice]["hifigan"]
|
| 160 |
gan_inputs = {"spec": spec}
|
| 161 |
audio = hifigan_session.run(None, gan_inputs)[0]
|
| 162 |
|
|
|
|
| 167 |
return (sample_rate, audio_array)
|
| 168 |
|
| 169 |
|
| 170 |
+
def synthesize_speech(text: str, voice: str, pace: float = 1.0):
|
| 171 |
+
"""
|
| 172 |
+
Synthesize speech from text using the selected voice.
|
| 173 |
+
Uses AOT models on GPU or ONNX models on CPU.
|
| 174 |
+
|
| 175 |
+
Args:
|
| 176 |
+
text: Input text to synthesize
|
| 177 |
+
voice: Voice to use (Caro or Karlsson)
|
| 178 |
+
pace: Speaking rate (1.0 is normal, <1.0 is slower, >1.0 is faster)
|
| 179 |
+
|
| 180 |
+
Returns:
|
| 181 |
+
Tuple of (sample_rate, audio_array)
|
| 182 |
+
"""
|
| 183 |
+
if USE_GPU:
|
| 184 |
+
return synthesize_speech_aot(text, voice, pace)
|
| 185 |
+
else:
|
| 186 |
+
return synthesize_speech_onnx(text, voice, pace)
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
# Apply Zero GPU decorator if available
|
| 190 |
+
if HAS_SPACES and USE_GPU:
|
| 191 |
+
synthesize_speech = spaces.GPU(synthesize_speech)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
# Create Gradio interface
|
| 195 |
with gr.Blocks(title="German TTS - Caro & Karlsson") as demo:
|
| 196 |
gr.Markdown(
|
| 197 |
+
f"""
|
| 198 |
# 🎙️ German Text-to-Speech
|
| 199 |
|
| 200 |
Generate German speech using two different voices: **Caro** and **Karlsson**.
|
| 201 |
|
| 202 |
+
**Running on:** {DEVICE.upper()} {"(AOT models)" if USE_GPU else "(ONNX models)"}
|
| 203 |
+
|
| 204 |
Enter your German text below and select a voice to synthesize speech.
|
| 205 |
"""
|
| 206 |
)
|
|
|
|
| 215 |
)
|
| 216 |
|
| 217 |
voice_dropdown = gr.Dropdown(
|
| 218 |
+
choices=["Caro", "Karlsson"], label="Voice", value="Karlsson"
|
| 219 |
)
|
| 220 |
|
| 221 |
pace_slider = gr.Slider(
|