Spaces:
Running
on
Zero
Running
on
Zero
Add app, track models via lfs
Browse files- .gitattributes +2 -0
- app.py +148 -0
- char_tokenizers.py +140 -0
- requirements.txt +61 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
|
app.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import onnxruntime as ort
|
| 3 |
+
import numpy as np
|
| 4 |
+
from char_tokenizers import GermanCharsTokenizer
|
| 5 |
+
|
| 6 |
+
# Initialize tokenizer
|
| 7 |
+
TOKENIZER = GermanCharsTokenizer()
|
| 8 |
+
|
| 9 |
+
# Model paths
|
| 10 |
+
MODELS = {
|
| 11 |
+
"Caro": {
|
| 12 |
+
"fastpitch": "onnx/caro_fastpitch.onnx",
|
| 13 |
+
"hifigan": "onnx/caro_hifigan.onnx",
|
| 14 |
+
},
|
| 15 |
+
"Karlsson": {
|
| 16 |
+
"fastpitch": "onnx/karlsson_fastpitch.onnx",
|
| 17 |
+
"hifigan": "onnx/karlsson_hifigan.onnx",
|
| 18 |
+
},
|
| 19 |
+
}
|
| 20 |
+
|
| 21 |
+
# Load models
|
| 22 |
+
print("Loading ONNX models...")
|
| 23 |
+
sessions = {}
|
| 24 |
+
for voice_name, paths in MODELS.items():
|
| 25 |
+
print(f"Loading {voice_name}...")
|
| 26 |
+
sessions[voice_name] = {
|
| 27 |
+
"fastpitch": ort.InferenceSession(paths["fastpitch"]),
|
| 28 |
+
"hifigan": ort.InferenceSession(paths["hifigan"]),
|
| 29 |
+
}
|
| 30 |
+
print("Models loaded successfully!")
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
def synthesize_speech(text: str, voice: str, pace: float = 1.0):
|
| 34 |
+
"""
|
| 35 |
+
Synthesize speech from text using the selected voice.
|
| 36 |
+
|
| 37 |
+
Args:
|
| 38 |
+
text: Input text to synthesize
|
| 39 |
+
voice: Voice to use (Caro or Karlsson)
|
| 40 |
+
pace: Speaking rate (1.0 is normal, <1.0 is slower, >1.0 is faster)
|
| 41 |
+
|
| 42 |
+
Returns:
|
| 43 |
+
Tuple of (sample_rate, audio_array)
|
| 44 |
+
"""
|
| 45 |
+
if not text.strip():
|
| 46 |
+
return None
|
| 47 |
+
|
| 48 |
+
# Tokenize text
|
| 49 |
+
tokens = TOKENIZER.encode(text)
|
| 50 |
+
|
| 51 |
+
# Prepare inputs for FastPitch
|
| 52 |
+
paces = np.zeros(len(tokens), dtype=np.float32) + pace
|
| 53 |
+
pitches = np.zeros(len(tokens), dtype=np.float32) # Keep pitch at 0.0
|
| 54 |
+
|
| 55 |
+
inputs = {
|
| 56 |
+
"text": np.array([tokens], dtype=np.int64),
|
| 57 |
+
"pace": np.array([paces], dtype=np.float32),
|
| 58 |
+
"pitch": np.array([pitches], dtype=np.float32),
|
| 59 |
+
}
|
| 60 |
+
|
| 61 |
+
# Generate spectrogram with FastPitch
|
| 62 |
+
fastpitch_session = sessions[voice]["fastpitch"]
|
| 63 |
+
spec = fastpitch_session.run(None, inputs)[0]
|
| 64 |
+
|
| 65 |
+
# Generate audio with HiFiGAN
|
| 66 |
+
hifigan_session = sessions[voice]["hifigan"]
|
| 67 |
+
gan_inputs = {"spec": spec}
|
| 68 |
+
audio = hifigan_session.run(None, gan_inputs)[0]
|
| 69 |
+
|
| 70 |
+
# Return sample rate and audio
|
| 71 |
+
sample_rate = 44100
|
| 72 |
+
audio_array = audio.squeeze()
|
| 73 |
+
|
| 74 |
+
return (sample_rate, audio_array)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# Create Gradio interface
|
| 78 |
+
with gr.Blocks(title="German TTS - Caro & Karlsson") as demo:
|
| 79 |
+
gr.Markdown(
|
| 80 |
+
"""
|
| 81 |
+
# 🎙️ German Text-to-Speech
|
| 82 |
+
|
| 83 |
+
Generate German speech using two different voices: **Caro** and **Karlsson**.
|
| 84 |
+
|
| 85 |
+
Enter your German text below and select a voice to synthesize speech.
|
| 86 |
+
"""
|
| 87 |
+
)
|
| 88 |
+
|
| 89 |
+
with gr.Row():
|
| 90 |
+
with gr.Column():
|
| 91 |
+
text_input = gr.Textbox(
|
| 92 |
+
label="Text to synthesize",
|
| 93 |
+
placeholder="Geben Sie hier Ihren deutschen Text ein...",
|
| 94 |
+
lines=5,
|
| 95 |
+
value="Hallo! Willkommen zur deutschen Sprachsynthese.",
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
voice_dropdown = gr.Dropdown(
|
| 99 |
+
choices=list(MODELS.keys()), label="Voice", value="Karlsson"
|
| 100 |
+
)
|
| 101 |
+
|
| 102 |
+
pace_slider = gr.Slider(
|
| 103 |
+
minimum=0.5,
|
| 104 |
+
maximum=2.0,
|
| 105 |
+
value=1.0,
|
| 106 |
+
step=0.1,
|
| 107 |
+
label="Speaking Rate",
|
| 108 |
+
info="1.0 is normal speed",
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
generate_btn = gr.Button("Generate Speech 🔊", variant="primary")
|
| 112 |
+
|
| 113 |
+
with gr.Column():
|
| 114 |
+
audio_output = gr.Audio(label="Generated Audio", type="numpy")
|
| 115 |
+
|
| 116 |
+
gr.Examples(
|
| 117 |
+
examples=[
|
| 118 |
+
["Guten Tag! Wie geht es Ihnen heute?", "Caro", 1.0],
|
| 119 |
+
[
|
| 120 |
+
"Die Wissenschaft hat in den letzten Jahren große Fortschritte gemacht.",
|
| 121 |
+
"Karlsson",
|
| 122 |
+
1.0,
|
| 123 |
+
],
|
| 124 |
+
[
|
| 125 |
+
"Es war einmal ein kleines Mädchen, das durch den Wald spazierte.",
|
| 126 |
+
"Caro",
|
| 127 |
+
0.9,
|
| 128 |
+
],
|
| 129 |
+
[
|
| 130 |
+
"Berlin ist die Hauptstadt und zugleich ein Land der Bundesrepublik Deutschland.",
|
| 131 |
+
"Karlsson",
|
| 132 |
+
1.0,
|
| 133 |
+
],
|
| 134 |
+
],
|
| 135 |
+
inputs=[text_input, voice_dropdown, pace_slider],
|
| 136 |
+
outputs=audio_output,
|
| 137 |
+
fn=synthesize_speech,
|
| 138 |
+
cache_examples=False,
|
| 139 |
+
)
|
| 140 |
+
|
| 141 |
+
generate_btn.click(
|
| 142 |
+
fn=synthesize_speech,
|
| 143 |
+
inputs=[text_input, voice_dropdown, pace_slider],
|
| 144 |
+
outputs=audio_output,
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
if __name__ == "__main__":
|
| 148 |
+
demo.launch()
|
char_tokenizers.py
ADDED
|
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
from typing import List
|
| 3 |
+
import unicodedata
|
| 4 |
+
from abc import ABC, abstractmethod
|
| 5 |
+
|
| 6 |
+
def normalize_unicode_text(text: str) -> str:
|
| 7 |
+
if not unicodedata.is_normalized("NFC", text):
|
| 8 |
+
text = unicodedata.normalize("NFC", text)
|
| 9 |
+
|
| 10 |
+
return text
|
| 11 |
+
|
| 12 |
+
def any_locale_text_preprocessing(text: str) -> str:
|
| 13 |
+
res = []
|
| 14 |
+
for c in normalize_unicode_text(text):
|
| 15 |
+
if c in ['’']:
|
| 16 |
+
res.append("'")
|
| 17 |
+
else:
|
| 18 |
+
res.append(c)
|
| 19 |
+
|
| 20 |
+
return ''.join(res)
|
| 21 |
+
|
| 22 |
+
class BaseTokenizer(ABC):
|
| 23 |
+
PAD, BLANK, OOV = '<pad>', '<blank>', '<oov>'
|
| 24 |
+
|
| 25 |
+
def __init__(self, tokens, *, pad=PAD, blank=BLANK, oov=OOV, sep='', add_blank_at=None):
|
| 26 |
+
"""Abstract class for creating an arbitrary tokenizer to convert string to list of int tokens.
|
| 27 |
+
Args:
|
| 28 |
+
tokens: List of tokens.
|
| 29 |
+
pad: Pad token as string.
|
| 30 |
+
blank: Blank token as string.
|
| 31 |
+
oov: OOV token as string.
|
| 32 |
+
sep: Separation token as string.
|
| 33 |
+
add_blank_at: Add blank to labels in the specified order ("last") or after tokens (any non None),
|
| 34 |
+
if None then no blank in labels.
|
| 35 |
+
"""
|
| 36 |
+
super().__init__()
|
| 37 |
+
|
| 38 |
+
tokens = list(tokens)
|
| 39 |
+
# TODO @xueyang: in general, IDs of pad, sil, blank, and oov are preserved ahead instead of dynamically
|
| 40 |
+
# assigned according to the number of tokens. The downside of using dynamical assignment leads to different
|
| 41 |
+
# IDs for each.
|
| 42 |
+
self.pad, tokens = len(tokens), tokens + [pad] # Padding
|
| 43 |
+
|
| 44 |
+
if add_blank_at is not None:
|
| 45 |
+
self.blank, tokens = len(tokens), tokens + [blank] # Reserved for blank from asr-model
|
| 46 |
+
else:
|
| 47 |
+
# use add_blank_at=None only for ASR where blank is added automatically, disable blank here
|
| 48 |
+
self.blank = None
|
| 49 |
+
|
| 50 |
+
self.oov, tokens = len(tokens), tokens + [oov] # Out Of Vocabulary
|
| 51 |
+
|
| 52 |
+
if add_blank_at == "last":
|
| 53 |
+
tokens[-1], tokens[-2] = tokens[-2], tokens[-1]
|
| 54 |
+
self.oov, self.blank = self.blank, self.oov
|
| 55 |
+
|
| 56 |
+
self.tokens = tokens
|
| 57 |
+
self.sep = sep
|
| 58 |
+
|
| 59 |
+
self._util_ids = {self.pad, self.blank, self.oov}
|
| 60 |
+
self._token2id = {l: i for i, l in enumerate(tokens)}
|
| 61 |
+
self._id2token = tokens
|
| 62 |
+
|
| 63 |
+
def __call__(self, text: str) -> List[int]:
|
| 64 |
+
return self.encode(text)
|
| 65 |
+
|
| 66 |
+
@abstractmethod
|
| 67 |
+
def encode(self, text: str) -> List[int]:
|
| 68 |
+
"""Turns str text into int tokens."""
|
| 69 |
+
pass
|
| 70 |
+
|
| 71 |
+
def decode(self, tokens: List[int]) -> str:
|
| 72 |
+
"""Turns ints tokens into str text."""
|
| 73 |
+
return self.sep.join(self._id2token[t] for t in tokens if t not in self._util_ids)
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
class GermanCharsTokenizer(BaseTokenizer):
|
| 77 |
+
_PUNCT_LIST = ['!', '"', '(', ')', ',', '-', '.', '/', ':', ';', '?', '[', ']', '{', '}', '«', '»', '‒', '–', '—', '‘', '‚', '“', '„', '‹', '›']
|
| 78 |
+
_CHARSET_STR = 'ABCDEFGHIJKLMNOPQRSTUVWXYZÄÖÜẞabcdefghijklmnopqrstuvwxyzäöüß'
|
| 79 |
+
PUNCT_LIST = (
|
| 80 |
+
',', '.', '!', '?', '-',
|
| 81 |
+
':', ';', '/', '"', '(',
|
| 82 |
+
')', '[', ']', '{', '}',
|
| 83 |
+
)
|
| 84 |
+
|
| 85 |
+
def __init__(
|
| 86 |
+
self,
|
| 87 |
+
chars=_CHARSET_STR,
|
| 88 |
+
punct=True,
|
| 89 |
+
apostrophe=True,
|
| 90 |
+
add_blank_at=None,
|
| 91 |
+
pad_with_space=True,
|
| 92 |
+
non_default_punct_list=_PUNCT_LIST,
|
| 93 |
+
text_preprocessing_func=any_locale_text_preprocessing,
|
| 94 |
+
):
|
| 95 |
+
tokens = []
|
| 96 |
+
self.space, tokens = len(tokens), tokens + [' '] # Space
|
| 97 |
+
tokens.extend(chars)
|
| 98 |
+
if apostrophe:
|
| 99 |
+
tokens.append("'") # Apostrophe for saving "don't" and "Joe's"
|
| 100 |
+
|
| 101 |
+
if punct:
|
| 102 |
+
if non_default_punct_list is not None:
|
| 103 |
+
self.PUNCT_LIST = non_default_punct_list
|
| 104 |
+
tokens.extend(self.PUNCT_LIST)
|
| 105 |
+
|
| 106 |
+
super().__init__(tokens, add_blank_at=add_blank_at)
|
| 107 |
+
|
| 108 |
+
self.punct = punct
|
| 109 |
+
self.pad_with_space = pad_with_space
|
| 110 |
+
|
| 111 |
+
self.text_preprocessing_func = text_preprocessing_func
|
| 112 |
+
|
| 113 |
+
def encode(self, text):
|
| 114 |
+
"""See base class."""
|
| 115 |
+
cs, space, tokens = [], self.tokens[self.space], set(self.tokens)
|
| 116 |
+
|
| 117 |
+
text = self.text_preprocessing_func(text)
|
| 118 |
+
for c in text:
|
| 119 |
+
# Add a whitespace if the current char is a whitespace while the previous char is not a whitespace.
|
| 120 |
+
if c == space and len(cs) > 0 and cs[-1] != space:
|
| 121 |
+
cs.append(c)
|
| 122 |
+
# Add the current char that is an alphanumeric or an apostrophe.
|
| 123 |
+
elif (c.isalnum() or c == "'") and c in tokens:
|
| 124 |
+
cs.append(c)
|
| 125 |
+
# Add a punctuation that has a single char.
|
| 126 |
+
elif (c in self.PUNCT_LIST) and self.punct:
|
| 127 |
+
cs.append(c)
|
| 128 |
+
# Warn about unknown char
|
| 129 |
+
elif c != space:
|
| 130 |
+
logging.warning(f"Text: [{text}] contains unknown char: [{c}]. Symbol will be skipped.")
|
| 131 |
+
|
| 132 |
+
# Remove trailing spaces
|
| 133 |
+
if cs:
|
| 134 |
+
while cs[-1] == space:
|
| 135 |
+
cs.pop()
|
| 136 |
+
|
| 137 |
+
if self.pad_with_space:
|
| 138 |
+
cs = [space] + cs + [space]
|
| 139 |
+
|
| 140 |
+
return [self._token2id[p] for p in cs]
|
requirements.txt
ADDED
|
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
aiofiles==24.1.0
|
| 2 |
+
annotated-doc==0.0.4
|
| 3 |
+
annotated-types==0.7.0
|
| 4 |
+
anyio==4.11.0
|
| 5 |
+
brotli==1.2.0
|
| 6 |
+
certifi==2025.11.12
|
| 7 |
+
click==8.3.1
|
| 8 |
+
coloredlogs==15.0.1
|
| 9 |
+
fastapi==0.121.3
|
| 10 |
+
ffmpy==1.0.0
|
| 11 |
+
filelock==3.20.0
|
| 12 |
+
flatbuffers==25.9.23
|
| 13 |
+
fsspec==2025.10.0
|
| 14 |
+
gradio==5.50.0
|
| 15 |
+
gradio-client==1.14.0
|
| 16 |
+
groovy==0.1.2
|
| 17 |
+
h11==0.16.0
|
| 18 |
+
hf-xet==1.2.0
|
| 19 |
+
httpcore==1.0.9
|
| 20 |
+
httpx==0.28.1
|
| 21 |
+
huggingface-hub==1.1.5
|
| 22 |
+
humanfriendly==10.0
|
| 23 |
+
idna==3.11
|
| 24 |
+
jinja2==3.1.6
|
| 25 |
+
markdown-it-py==4.0.0
|
| 26 |
+
markupsafe==3.0.3
|
| 27 |
+
mdurl==0.1.2
|
| 28 |
+
mpmath==1.3.0
|
| 29 |
+
numpy==2.3.5
|
| 30 |
+
onnxruntime==1.23.2
|
| 31 |
+
orjson==3.11.4
|
| 32 |
+
packaging==25.0
|
| 33 |
+
pandas==2.3.3
|
| 34 |
+
pillow==11.3.0
|
| 35 |
+
protobuf==6.33.1
|
| 36 |
+
pydantic==2.12.3
|
| 37 |
+
pydantic-core==2.41.4
|
| 38 |
+
pydub==0.25.1
|
| 39 |
+
pygments==2.19.2
|
| 40 |
+
python-dateutil==2.9.0.post0
|
| 41 |
+
python-multipart==0.0.20
|
| 42 |
+
pytz==2025.2
|
| 43 |
+
pyyaml==6.0.3
|
| 44 |
+
rich==14.2.0
|
| 45 |
+
ruff==0.14.6
|
| 46 |
+
safehttpx==0.1.7
|
| 47 |
+
semantic-version==2.10.0
|
| 48 |
+
shellingham==1.5.4
|
| 49 |
+
six==1.17.0
|
| 50 |
+
sniffio==1.3.1
|
| 51 |
+
starlette==0.50.0
|
| 52 |
+
sympy==1.14.0
|
| 53 |
+
tomlkit==0.13.3
|
| 54 |
+
tqdm==4.67.1
|
| 55 |
+
typer==0.20.0
|
| 56 |
+
typer-slim==0.20.0
|
| 57 |
+
typing-extensions==4.15.0
|
| 58 |
+
typing-inspection==0.4.2
|
| 59 |
+
tzdata==2025.2
|
| 60 |
+
uvicorn==0.38.0
|
| 61 |
+
websockets==15.0.1
|