import re from bs4 import BeautifulSoup import pickle from nltk.corpus import stopwords from fuzzywuzzy import fuzz import numpy as np import nltk nltk.download('stopwords') with open('cv.pkl', 'rb') as file: cv = pickle.load(file) def common_words(q1, q2): w1 = set(map(lambda word: word.lower().strip(), q1.split(" "))) w2 = set(map(lambda word: word.lower().strip(), q2.split(" "))) return len(w1 & w2) def total_words(q1, q2): w1 = set(map(lambda word: word.lower().strip(), q1.split(" "))) w2 = set(map(lambda word: word.lower().strip(), q2.split(" "))) return len(w1) + len(w2) # features based on tokens def token_features(q1, q2): safe_div = 0.0001 token_features = [0.0]*8 q1_tokens = q1.split() q2_tokens = q2.split() if len(q1_tokens) == 0 or len(q2_tokens) == 0: return token_features stopword = stopwords.words('english') q1_non_stopwords = set([word for word in q1_tokens if word not in stopword]) q2_non_stopwords = set([word for word in q2_tokens if word not in stopword]) q1_stop_words = set([word for word in q1_tokens if word in stopword]) q2_stop_words = set([word for word in q2_tokens if word in stopword]) common_word_count = len(q1_non_stopwords.intersection(q2_non_stopwords)) common_stop_word_count = len(q1_stop_words.intersection(q2_stop_words)) common_token_count = len(set(q1_tokens).intersection(set(q2_tokens))) token_features[0] = common_word_count/(min(len(q1_non_stopwords), len(q2_non_stopwords)) + safe_div) token_features[1] = common_word_count/(max(len(q1_non_stopwords), len(q2_non_stopwords)) + safe_div) token_features[2] = common_stop_word_count/(min(len(q1_stop_words), len(q2_stop_words)) + safe_div) token_features[3] = common_stop_word_count/(max(len(q1_stop_words), len(q2_stop_words)) + safe_div) token_features[4] = common_token_count/(min(len(q1_tokens), len(q2_tokens)) + safe_div) token_features[5] = common_token_count/(max(len(q1_tokens), len(q2_tokens)) + safe_div) token_features[6] = int(q1_tokens[-1] == q2_tokens[-1]) token_features[7] = int(q1_tokens[0] == q2_tokens[0]) return token_features # Fuzzy Features def fuzzy_features(q1, q2): fuzzy_features = [0.0]*4 # fuzz_ratio fuzzy_features[0] = fuzz.QRatio(q1, q2) # fuzz_partial_ratio fuzzy_features[1] = fuzz.partial_ratio(q1, q2) # token_sort_ratio fuzzy_features[2] = fuzz.token_sort_ratio(q1, q2) # token_set_ratio fuzzy_features[3] = fuzz.token_set_ratio(q1, q2) return fuzzy_features # data preprocessing def preprocess(q): q = str(q).lower().strip() # Replace certain special characters with their string equivalents q = q.replace('%', ' percent') q = q.replace('$', ' dollar ') q = q.replace('₹', ' rupee ') q = q.replace('€', ' euro ') q = q.replace('@', ' at ') # The pattern '[math]' appears around 900 times in the whole dataset. q = q.replace('[math]', '') # Replacing some numbers with string equivalents (not perfect, can be done better to account for more cases) q = q.replace(',000,000,000 ', 'b ') q = q.replace(',000,000 ', 'm ') q = q.replace(',000 ', 'k ') q = re.sub(r'([0-9]+)000000000', r'\1b', q) q = re.sub(r'([0-9]+)000000', r'\1m', q) q = re.sub(r'([0-9]+)000', r'\1k', q) # Decontracting words # https://en.wikipedia.org/wiki/Wikipedia%3aList_of_English_contractions # https://stackoverflow.com/a/19794953 contractions = { "ain't": "am not", "aren't": "are not", "can't": "can not", "can't've": "can not have", "'cause": "because", "could've": "could have", "couldn't": "could not", "couldn't've": "could not have", "didn't": "did not", "doesn't": "does not", "don't": "do not", "hadn't": "had not", "hadn't've": "had not have", "hasn't": "has not", "haven't": "have not", "he'd": "he would", "he'd've": "he would have", "he'll": "he will", "he'll've": "he will have", "he's": "he is", "how'd": "how did", "how'd'y": "how do you", "how'll": "how will", "how's": "how is", "i'd": "i would", "i'd've": "i would have", "i'll": "i will", "i'll've": "i will have", "i'm": "i am", "i've": "i have", "isn't": "is not", "it'd": "it would", "it'd've": "it would have", "it'll": "it will", "it'll've": "it will have", "it's": "it is", "let's": "let us", "ma'am": "madam", "mayn't": "may not", "might've": "might have", "mightn't": "might not", "mightn't've": "might not have", "must've": "must have", "mustn't": "must not", "mustn't've": "must not have", "needn't": "need not", "needn't've": "need not have", "o'clock": "of the clock", "oughtn't": "ought not", "oughtn't've": "ought not have", "shan't": "shall not", "sha'n't": "shall not", "shan't've": "shall not have", "she'd": "she would", "she'd've": "she would have", "she'll": "she will", "she'll've": "she will have", "she's": "she is", "should've": "should have", "shouldn't": "should not", "shouldn't've": "should not have", "so've": "so have", "so's": "so as", "that'd": "that would", "that'd've": "that would have", "that's": "that is", "there'd": "there would", "there'd've": "there would have", "there's": "there is", "they'd": "they would", "they'd've": "they would have", "they'll": "they will", "they'll've": "they will have", "they're": "they are", "they've": "they have", "to've": "to have", "wasn't": "was not", "we'd": "we would", "we'd've": "we would have", "we'll": "we will", "we'll've": "we will have", "we're": "we are", "we've": "we have", "weren't": "were not", "what'll": "what will", "what'll've": "what will have", "what're": "what are", "what's": "what is", "what've": "what have", "when's": "when is", "when've": "when have", "where'd": "where did", "where's": "where is", "where've": "where have", "who'll": "who will", "who'll've": "who will have", "who's": "who is", "who've": "who have", "why's": "why is", "why've": "why have", "will've": "will have", "won't": "will not", "won't've": "will not have", "would've": "would have", "wouldn't": "would not", "wouldn't've": "would not have", "y'all": "you all", "y'all'd": "you all would", "y'all'd've": "you all would have", "y'all're": "you all are", "y'all've": "you all have", "you'd": "you would", "you'd've": "you would have", "you'll": "you will", "you'll've": "you will have", "you're": "you are", "you've": "you have" } q_decontracted = [] for word in q.split(): if word in contractions: word = contractions[word] q_decontracted.append(word) q = ' '.join(q_decontracted) q = q.replace("'ve", " have") q = q.replace("n't", " not") q = q.replace("'re", " are") q = q.replace("'ll", " will") # Removing HTML tags q = BeautifulSoup(q) q = q.get_text() # Remove punctuations pattern = re.compile('\W') q = re.sub(pattern, ' ', q).strip() return q def preprocessing(q1, q2): features = [] q1 = preprocess(q1) q2 = preprocess(q2) features.append(len(q1)) features.append(len(q2)) features.append(len(q1.split(" "))) features.append(len(q2.split(" "))) features.append(common_words(q1, q2)) features.append(total_words(q1, q2)) features.append(common_words(q1, q2)/(total_words(q1, q2) + 0.0001)) features.extend(token_features(q1, q2)) features.extend(fuzzy_features(q1, q2)) q1_bow = cv.transform([q1]).toarray() q2_bow = cv.transform([q2]).toarray() return np.hstack((np.array(features).reshape(1, 19), q1_bow, q2_bow))