Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from PIL import Image
|
| 5 |
+
import numpy as np
|
| 6 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
| 7 |
+
|
| 8 |
+
# 加载预训练的AI图像检测器
|
| 9 |
+
model_name = "SehwanHong/Stable-Diffusion-Detector"
|
| 10 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
|
| 11 |
+
model = AutoModelForImageClassification.from_pretrained(model_name)
|
| 12 |
+
|
| 13 |
+
def detect_ai_image(image):
|
| 14 |
+
# 处理图像
|
| 15 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
| 16 |
+
with torch.no_grad():
|
| 17 |
+
outputs = model(**inputs)
|
| 18 |
+
|
| 19 |
+
# 获取预测结果
|
| 20 |
+
logits = outputs.logits
|
| 21 |
+
predicted_class_idx = logits.argmax(-1).item()
|
| 22 |
+
|
| 23 |
+
# 获取概率
|
| 24 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
| 25 |
+
ai_probability = probabilities[0][1].item() # 假设索引1是AI生成类
|
| 26 |
+
|
| 27 |
+
# 分析图像特征
|
| 28 |
+
features = analyze_image_features(image)
|
| 29 |
+
|
| 30 |
+
return {
|
| 31 |
+
"ai_probability": float(ai_probability),
|
| 32 |
+
"features": features,
|
| 33 |
+
"predicted_class": model.config.id2label[predicted_class_idx]
|
| 34 |
+
}
|
| 35 |
+
|
| 36 |
+
def analyze_image_features(image):
|
| 37 |
+
# 简单图像特征分析
|
| 38 |
+
features = {}
|
| 39 |
+
|
| 40 |
+
# 转换为numpy数组
|
| 41 |
+
img_array = np.array(image)
|
| 42 |
+
|
| 43 |
+
# 基本特征
|
| 44 |
+
features["width"] = image.width
|
| 45 |
+
features["height"] = image.height
|
| 46 |
+
features["aspect_ratio"] = image.width / max(1, image.height)
|
| 47 |
+
|
| 48 |
+
# 颜色分析
|
| 49 |
+
if len(img_array.shape) == 3: # 彩色图像
|
| 50 |
+
features["avg_red"] = float(np.mean(img_array[:,:,0]))
|
| 51 |
+
features["avg_green"] = float(np.mean(img_array[:,:,1]))
|
| 52 |
+
features["avg_blue"] = float(np.mean(img_array[:,:,2]))
|
| 53 |
+
|
| 54 |
+
return features
|
| 55 |
+
|
| 56 |
+
# 创建Gradio界面
|
| 57 |
+
iface = gr.Interface(
|
| 58 |
+
fn=detect_ai_image,
|
| 59 |
+
inputs=gr.Image(type="pil"),
|
| 60 |
+
outputs=gr.JSON(),
|
| 61 |
+
title="AI图像检测API",
|
| 62 |
+
description="检测图像是否由AI生成"
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
iface.launch()
|