Spaces:
Sleeping
Sleeping
Upload app.py with huggingface_hub
Browse files
app.py
ADDED
|
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Streamlit App for Tourism Package Prediction
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import streamlit as st
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import numpy as np
|
| 9 |
+
import joblib
|
| 10 |
+
from huggingface_hub import hf_hub_download
|
| 11 |
+
|
| 12 |
+
# Page configuration
|
| 13 |
+
st.set_page_config(
|
| 14 |
+
page_title="Tourism Package Prediction",
|
| 15 |
+
page_icon="🏖️",
|
| 16 |
+
layout="wide",
|
| 17 |
+
initial_sidebar_state="expanded"
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
@st.cache_resource
|
| 21 |
+
def load_model():
|
| 22 |
+
"""Load the trained model from HuggingFace Hub"""
|
| 23 |
+
try:
|
| 24 |
+
model_path = hf_hub_download(
|
| 25 |
+
repo_id="abhishek-kumar/tourism-package-prediction-model",
|
| 26 |
+
filename="best_model.joblib"
|
| 27 |
+
)
|
| 28 |
+
model = joblib.load(model_path)
|
| 29 |
+
return model
|
| 30 |
+
except Exception as e:
|
| 31 |
+
st.error(f"Error loading model: {e}")
|
| 32 |
+
return None
|
| 33 |
+
|
| 34 |
+
def prepare_input_data(age, gender, marital_status, city_tier, type_of_contact,
|
| 35 |
+
occupation, designation, monthly_income, num_person_visiting,
|
| 36 |
+
num_children_visiting, preferred_property_star, num_trips,
|
| 37 |
+
passport, own_car, duration_of_pitch, product_pitched,
|
| 38 |
+
num_followups, pitch_satisfaction_score):
|
| 39 |
+
"""Prepare input data for model prediction"""
|
| 40 |
+
|
| 41 |
+
# Create mapping dictionaries
|
| 42 |
+
gender_map = {"Male": 1, "Female": 0}
|
| 43 |
+
marital_map = {"Single": 2, "Married": 1, "Divorced": 0, "Unmarried": 3}
|
| 44 |
+
contact_map = {"Self Enquiry": 1, "Company Invited": 0}
|
| 45 |
+
occupation_map = {"Salaried": 2, "Small Business": 1, "Free Lancer": 0}
|
| 46 |
+
designation_map = {"Executive": 0, "Manager": 1, "Senior Manager": 2, "AVP": 3, "VP": 4}
|
| 47 |
+
product_map = {"Basic": 0, "Standard": 1, "Deluxe": 2, "Super Deluxe": 3}
|
| 48 |
+
passport_map = {"Yes": 1, "No": 0}
|
| 49 |
+
car_map = {"Yes": 1, "No": 0}
|
| 50 |
+
|
| 51 |
+
# Feature engineering (matching training data encoding)
|
| 52 |
+
if monthly_income <= 15000:
|
| 53 |
+
income_category = 0 # Low
|
| 54 |
+
elif monthly_income <= 25000:
|
| 55 |
+
income_category = 1 # Medium
|
| 56 |
+
elif monthly_income <= 35000:
|
| 57 |
+
income_category = 2 # High
|
| 58 |
+
else:
|
| 59 |
+
income_category = 3 # Very High
|
| 60 |
+
|
| 61 |
+
if age <= 25:
|
| 62 |
+
age_group = 0 # Young
|
| 63 |
+
elif age <= 35:
|
| 64 |
+
age_group = 1 # Adult
|
| 65 |
+
elif age <= 45:
|
| 66 |
+
age_group = 2 # Middle-aged
|
| 67 |
+
elif age <= 55:
|
| 68 |
+
age_group = 3 # Senior
|
| 69 |
+
else:
|
| 70 |
+
age_group = 4 # Elderly
|
| 71 |
+
|
| 72 |
+
# Create input array
|
| 73 |
+
input_array = np.array([[
|
| 74 |
+
age, contact_map[type_of_contact], city_tier, duration_of_pitch,
|
| 75 |
+
occupation_map[occupation], gender_map[gender], num_person_visiting,
|
| 76 |
+
num_followups, product_map[product_pitched], preferred_property_star,
|
| 77 |
+
marital_map[marital_status], num_trips, passport_map[passport],
|
| 78 |
+
pitch_satisfaction_score, car_map[own_car], num_children_visiting,
|
| 79 |
+
designation_map[designation], monthly_income, income_category, age_group
|
| 80 |
+
]])
|
| 81 |
+
|
| 82 |
+
return input_array
|
| 83 |
+
|
| 84 |
+
def main():
|
| 85 |
+
"""Main Streamlit app"""
|
| 86 |
+
|
| 87 |
+
st.title("Tourism Package Prediction")
|
| 88 |
+
st.markdown("### Predict Customer Purchase Likelihood for Wellness Tourism Package")
|
| 89 |
+
st.markdown("---")
|
| 90 |
+
|
| 91 |
+
# Load model
|
| 92 |
+
model = load_model()
|
| 93 |
+
if model is None:
|
| 94 |
+
st.error("Failed to load the prediction model.")
|
| 95 |
+
return
|
| 96 |
+
|
| 97 |
+
# Sidebar inputs
|
| 98 |
+
st.sidebar.header("Customer Information")
|
| 99 |
+
|
| 100 |
+
# Demographics
|
| 101 |
+
st.sidebar.subheader("Demographics")
|
| 102 |
+
age = st.sidebar.slider("Age", 18, 80, 35)
|
| 103 |
+
gender = st.sidebar.selectbox("Gender", ["Male", "Female"])
|
| 104 |
+
marital_status = st.sidebar.selectbox("Marital Status", ["Single", "Married", "Divorced", "Unmarried"])
|
| 105 |
+
|
| 106 |
+
# Location & Contact
|
| 107 |
+
st.sidebar.subheader("Location & Contact")
|
| 108 |
+
city_tier = st.sidebar.selectbox("City Tier", [1, 2, 3])
|
| 109 |
+
type_of_contact = st.sidebar.selectbox("Type of Contact", ["Self Enquiry", "Company Invited"])
|
| 110 |
+
|
| 111 |
+
# Professional Info
|
| 112 |
+
st.sidebar.subheader("Professional Info")
|
| 113 |
+
occupation = st.sidebar.selectbox("Occupation", ["Salaried", "Small Business", "Free Lancer"])
|
| 114 |
+
designation = st.sidebar.selectbox("Designation", ["Executive", "Manager", "Senior Manager", "AVP", "VP"])
|
| 115 |
+
monthly_income = st.sidebar.number_input("Monthly Income", 10000, 50000, 20000)
|
| 116 |
+
|
| 117 |
+
# Travel Preferences
|
| 118 |
+
st.sidebar.subheader("Travel Preferences")
|
| 119 |
+
num_person_visiting = st.sidebar.slider("Number of Persons Visiting", 1, 5, 2)
|
| 120 |
+
num_children_visiting = st.sidebar.slider("Number of Children Visiting", 0, 3, 0)
|
| 121 |
+
preferred_property_star = st.sidebar.slider("Preferred Property Star Rating", 1.0, 5.0, 3.0, 0.5)
|
| 122 |
+
num_trips = st.sidebar.slider("Number of Trips per Year", 0.0, 10.0, 2.0, 0.5)
|
| 123 |
+
|
| 124 |
+
# Additional Info
|
| 125 |
+
st.sidebar.subheader("Additional Info")
|
| 126 |
+
passport = st.sidebar.selectbox("Has Passport", ["Yes", "No"])
|
| 127 |
+
own_car = st.sidebar.selectbox("Owns Car", ["Yes", "No"])
|
| 128 |
+
|
| 129 |
+
# Sales Interaction
|
| 130 |
+
st.sidebar.subheader("Sales Interaction")
|
| 131 |
+
duration_of_pitch = st.sidebar.slider("Duration of Pitch (minutes)", 5, 60, 15)
|
| 132 |
+
product_pitched = st.sidebar.selectbox("Product Pitched", ["Basic", "Standard", "Deluxe", "Super Deluxe"])
|
| 133 |
+
num_followups = st.sidebar.slider("Number of Followups", 0.0, 6.0, 3.0, 0.5)
|
| 134 |
+
pitch_satisfaction_score = st.sidebar.slider("Pitch Satisfaction Score", 1, 5, 3)
|
| 135 |
+
|
| 136 |
+
# Main content
|
| 137 |
+
col1, col2 = st.columns([2, 1])
|
| 138 |
+
|
| 139 |
+
with col1:
|
| 140 |
+
st.subheader("Customer Profile Summary")
|
| 141 |
+
profile_data = {
|
| 142 |
+
"Age": age,
|
| 143 |
+
"Gender": gender,
|
| 144 |
+
"Marital Status": marital_status,
|
| 145 |
+
"City Tier": city_tier,
|
| 146 |
+
"Occupation": occupation,
|
| 147 |
+
"Monthly Income": f"₹{monthly_income:,}",
|
| 148 |
+
"Number of Persons": num_person_visiting,
|
| 149 |
+
"Preferred Star Rating": preferred_property_star,
|
| 150 |
+
"Annual Trips": num_trips,
|
| 151 |
+
"Has Passport": passport,
|
| 152 |
+
"Owns Car": own_car
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
for key, value in profile_data.items():
|
| 156 |
+
st.write(f"**{key}:** {value}")
|
| 157 |
+
|
| 158 |
+
with col2:
|
| 159 |
+
st.subheader("Prediction")
|
| 160 |
+
|
| 161 |
+
if st.button("Predict Purchase Likelihood", type="primary"):
|
| 162 |
+
input_data = prepare_input_data(
|
| 163 |
+
age, gender, marital_status, city_tier, type_of_contact,
|
| 164 |
+
occupation, designation, monthly_income, num_person_visiting,
|
| 165 |
+
num_children_visiting, preferred_property_star, num_trips,
|
| 166 |
+
passport, own_car, duration_of_pitch, product_pitched,
|
| 167 |
+
num_followups, pitch_satisfaction_score
|
| 168 |
+
)
|
| 169 |
+
|
| 170 |
+
try:
|
| 171 |
+
prediction = model.predict(input_data)[0]
|
| 172 |
+
prediction_proba = model.predict_proba(input_data)[0]
|
| 173 |
+
|
| 174 |
+
if prediction == 1:
|
| 175 |
+
st.success("High likelihood of purchase!")
|
| 176 |
+
st.write(f"**Confidence:** {prediction_proba[1]:.2%}")
|
| 177 |
+
st.balloons()
|
| 178 |
+
else:
|
| 179 |
+
st.warning("Low likelihood of purchase")
|
| 180 |
+
st.write(f"**Confidence:** {prediction_proba[0]:.2%}")
|
| 181 |
+
|
| 182 |
+
# Probability breakdown
|
| 183 |
+
st.subheader("Probability Breakdown")
|
| 184 |
+
prob_df = pd.DataFrame({
|
| 185 |
+
'Outcome': ['Will Not Purchase', 'Will Purchase'],
|
| 186 |
+
'Probability': [prediction_proba[0], prediction_proba[1]]
|
| 187 |
+
})
|
| 188 |
+
st.bar_chart(prob_df.set_index('Outcome'))
|
| 189 |
+
|
| 190 |
+
except Exception as e:
|
| 191 |
+
st.error(f"Prediction error: {e}")
|
| 192 |
+
|
| 193 |
+
st.markdown("---")
|
| 194 |
+
st.markdown("### About This Model")
|
| 195 |
+
st.info("""
|
| 196 |
+
This ML model predicts customer purchase likelihood for the Wellness Tourism Package
|
| 197 |
+
based on demographics, travel preferences, and sales interaction data.
|
| 198 |
+
""")
|
| 199 |
+
|
| 200 |
+
if __name__ == "__main__":
|
| 201 |
+
main()
|