Spaces:
Sleeping
Sleeping
File size: 25,348 Bytes
769a231 33b4426 769a231 33b4426 1687f4a 6bc6f4a 769a231 1687f4a 6bc6f4a 33b4426 769a231 1687f4a 769a231 33b4426 6bc6f4a 6192e6f 33b4426 897630b 33b4426 1687f4a 33b4426 1687f4a 33b4426 1687f4a 897630b 1687f4a 33b4426 897630b 33b4426 769a231 33b4426 1687f4a 6bc6f4a 1687f4a 897630b 33b4426 769a231 33b4426 769a231 33b4426 1687f4a 33b4426 6192e6f 33b4426 6192e6f 33b4426 1687f4a 33b4426 897630b 33b4426 1687f4a 6bc6f4a 1687f4a 6bc6f4a 1687f4a 33b4426 897630b 769a231 897630b 33b4426 1687f4a 33b4426 1687f4a 33b4426 1687f4a b819e7b 897630b 1687f4a 33b4426 769a231 33b4426 6192e6f 33b4426 1687f4a 33b4426 1687f4a 33b4426 769a231 6192e6f 33b4426 769a231 33b4426 897630b 33b4426 658a650 33b4426 658a650 33b4426 1687f4a 33b4426 769a231 33b4426 769a231 897630b 1687f4a 769a231 33b4426 1687f4a 33b4426 1687f4a 33b4426 658a650 33b4426 6192e6f 1687f4a 33b4426 1687f4a 897630b 33b4426 6192e6f 897630b 6192e6f 897630b 769a231 33b4426 769a231 6192e6f 769a231 6192e6f 769a231 33b4426 897630b 33b4426 6192e6f 33b4426 897630b 769a231 897630b 769a231 6192e6f 769a231 6192e6f 769a231 897630b 769a231 6192e6f 769a231 33b4426 769a231 6192e6f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 |
import os
import re
import json
import csv
import tempfile
import time
import subprocess
import shutil
from typing import List, Dict, Any, Tuple
import PyPDF2
import docx2txt
import gradio as gr
import pandas as pd
import logging
from openai import OpenAI
from concurrent.futures import ThreadPoolExecutor, as_completed
import gradio.themes.soft as SoftTheme # For the UI theme
# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
# Global Configuration
DEEPINFRA_API_KEY = "kPEm10rrnxXrCf0TuB6Xcd7Y7lp3YgKa"
DEEPINFRA_BASE_URL = "https://api.deepinfra.com/v1/openai"
DEFAULT_MODEL = "openai/gpt-oss-120b"
REQUEST_TIMEOUT_SECS = 120
# OpenAI client for DeepInfra
default_client = OpenAI(
api_key=DEEPINFRA_API_KEY,
base_url=DEEPINFRA_BASE_URL,
)
# --- Prompts for LLM Calls ---
JD_SYSTEM = """You are an expert recruitment analyst. Extract a job description into STRICT JSON.
Rules:
- Output ONLY JSON (no markdown, no prose).
- If the JD language is not English, still output keys in English but translate skills into an additional 'skills_en' array.
- Keep items short and normalized (e.g., 'python', 'sql').
Schema:
{
"title": "",
"seniority": "",
"skills": [],
"skills_en": [],
"qualifications": [],
"responsibilities": [],
"nice_to_have": []
}
"""
RESUME_SYSTEM = """You are an expert resume parser. Extract a candidate profile into STRICT JSON.
Rules:
- Output ONLY JSON (no markdown, no prose).
- Provide 'skills_en' translated/normalized to English for matching.
- Keep arrays compact, deduplicate entries.
Schema:
{
"name": "",
"email": "",
"phone": "",
"skills": [],
"skills_en": [],
"education": [{"degree":"", "field":"", "institution":"", "year":""}],
"experience": [{"title":"", "company":"", "start_date":"", "end_date":"", "summary":""}],
"languages": [],
"certificates": [],
"soft_skills": []
}
"""
FEEDBACK_SYSTEM_DETAILED = """You are an expert technical recruiter. Compare a job and a candidate and return STRICT JSON with actionable feedback and a detailed score breakdown.
Respond in the job description's language.
Scores should be out of 100.
Schema:
{
"overall_summary": "",
"scores": {
"skills": 0,
"qualifications": 0,
"responsibilities": 0,
"education_and_experience": 0,
"certificates": 0,
"soft_skills": 0
},
"strengths": [],
"weaknesses": [],
"missing_requirements": [],
"suggestions": []
}
Scoring Guide:
- It's ok to say candidate does not match the requirement.
- Degree Section: Prioritize major over degree level. A candidate with a more relevant major should score higher even if the degree level is lower.
- Experience Section: Candidate with more relevant experience fields scores higher.
- Technical Skills Section: Candidate with more relevant technical skills scores higher.
- Responsibilities Section: Candidate with more relevant responsibilities scores higher.
- Certificates Section: Candidate with required certificates scores highest. No certificate = no score. Related but not exact certificates = medium score.
- Soft Skills Section: Prioritize foreign language and leadership. Candidate with more relevant soft skills scores higher.
- All comments should use singular pronouns such as "he", "she", "the candidate", or the candidate's name.
Keep each bullet short (max ~12 words).
Output ONLY JSON.
"""
RECOMMEND_SYSTEM = """You are a senior technical recruiter writing a concise recommendation summary for a hiring manager.
Based on the provided candidate and job description, write a 2-3 sentence summary explaining why this candidate is a good match.
Focus on key skills, relevant experience, and overall fit. Do not use a conversational tone.
Output ONLY the summary text, no markdown or extra formatting.
"""
# --- Helpers for file parsing ---
def _pdf_to_text(path: str) -> str:
text = []
with open(path, "rb") as f:
reader = PyPDF2.PdfReader(f)
for page in reader.pages:
text.append(page.extract_text() or "")
return "\n".join(text)
def _txt_to_text(path: str) -> str:
with open(path, "r", encoding="utf-8", errors="ignore") as f:
return f.read()
def _docx_to_text(path: str) -> str:
return docx2txt.process(path) or ""
def _doc_to_text_using_external_tool(path: str) -> str:
if shutil.which("antiword"):
try:
out = subprocess.check_output(["antiword", path], stderr=subprocess.DEVNULL)
return out.decode(errors="ignore")
except Exception as e:
logging.debug(f"antiword failed for {path}: {e}")
if shutil.which("catdoc"):
try:
out = subprocess.check_output(["catdoc", path], stderr=subprocess.DEVNULL)
return out.decode(errors="ignore")
except Exception as e:
logging.debug(f"catdoc failed for {path}: {e}")
if shutil.which("soffice"):
try:
tmpdir = tempfile.mkdtemp()
subprocess.run(["soffice", "--headless", "--convert-to", "txt:Text", "--outdir", tmpdir, path], check=True, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
basename = os.path.splitext(os.path.basename(path))[0] + ".txt"
txt_path = os.path.join(tmpdir, basename)
if os.path.exists(txt_path):
return _txt_to_text(txt_path)
except Exception as e:
logging.debug(f"libreoffice conversion failed for {path}: {e}")
return f"[Unsupported or unreadable .doc file: {os.path.basename(path)}. Install antiword/catdoc or libreoffice to enable .doc reading]"
def read_file_safely(path: str) -> str:
try:
low = path.lower()
if low.endswith(".pdf"):
return _pdf_to_text(path)
if low.endswith(".txt"):
return _txt_to_text(path)
if low.endswith(".docx"):
return _docx_to_text(path)
if low.endswith(".doc"):
return _doc_to_text_using_external_tool(path)
return f"[Unsupported file type: {os.path.basename(path)}]"
except Exception as e:
logging.error(f"Error reading file {path}: {e}")
return f"[Error reading file: {e}]"
def safe_json_loads(text: str) -> dict:
text = text or ""
try:
match = re.search(r"```json\s*(.*?)```", text, re.DOTALL | re.IGNORECASE)
if match:
block = match.group(1)
else:
start_index = text.find('{')
end_index = text.rfind('}')
if start_index != -1 and end_index != -1 and end_index > start_index:
block = text[start_index : end_index + 1]
else:
logging.error(f"Could not find any JSON object in the text: {text[:500]}...")
return {}
return json.loads(block)
except Exception as e:
logging.error(f"Failed to parse JSON: {e}\nRaw Text: {text[:500]}...")
return {}
# --- LLM Chat Wrapper ---
def deepinfra_chat(messages: List[Dict[str, str]], api_key: str, model: str, temperature: float = 0.2) -> str:
try:
client = default_client
if api_key and api_key != DEEPINFRA_API_KEY:
client = OpenAI(api_key=api_key, base_url=DEEPINFRA_BASE_URL)
resp = client.chat.completions.create(
model=model,
messages=messages,
temperature=temperature,
)
return (resp.choices[0].message.content or "").strip()
except Exception as e:
logging.error(f"API request failed: {e}")
raise gr.Error(f"API request failed: {e}. Check your API key and model name.")
def quick_contacts(text: str) -> dict:
email_re = re.compile(r"\b[a-zA-Z0-9._%+-]+@[a-zA-Z0-9.-]+\.[a-zA-Z]{2,}\b")
phone_re = re.compile(r"(\+\d{1,3}\s?)?(\(\d{1,4}\)|\d{1,4})[-.\s]?\d{1,4}[-.\s]?\d{1,9}")
email_guess = email_re.search(text)
phone_guess = phone_re.search(text)
return {
"email_guess": email_guess.group(0) if email_guess else None,
"phone_guess": phone_guess.group(0) if phone_guess else None,
}
def load_job_description(jd_text: str, jd_file) -> str:
if jd_text and jd_text.strip():
return jd_text
if jd_file:
return read_file_safely(jd_file.name)
return ""
def load_resume(resume_file) -> Tuple[str, str]:
if not resume_file:
return "", ""
fname = os.path.basename(resume_file.name)
text = read_file_safely(resume_file.name)
return text, fname
# --- Resume Normalizer ---
def normalize_resume(raw_resume: Dict) -> Dict:
return {
"name": raw_resume.get("name", "").strip(),
"email": raw_resume.get("email", "").strip(),
"phone": raw_resume.get("phone", "").strip(),
"skills": raw_resume.get("skills", []) or [],
"skills_en": raw_resume.get("skills_en", []) or [],
"education": raw_resume.get("education", []) or [{"degree": "", "field": "", "institution": "", "year": ""}],
"experience": raw_resume.get("experience", []) or [{"title": "", "company": "", "start_date": "", "end_date": "", "summary": ""}],
"languages": raw_resume.get("languages", []) or [],
"certificates": raw_resume.get("certificates", []) or [],
"soft_skills": raw_resume.get("soft_skills", []) or [],
"Projects": raw_resume.get("Projects", []) or [],
"summary": raw_resume.get("summary", "") or raw_resume.get("profile", "") or raw_resume.get("objective", "")
}
# --- Extraction Functions ---
def llm_extract_jd(jd_text: str, api_key: str, model: str, temperature: float = 0.1) -> Dict:
messages = [
{"role": "system", "content": JD_SYSTEM},
{"role": "user", "content": jd_text[:20000]},
]
raw = deepinfra_chat(messages, api_key=api_key, model=model, temperature=temperature)
return safe_json_loads(raw)
def llm_extract_resume(resume_text: str, api_key: str, model: str, temperature: float = 0.1) -> Dict:
messages = [
{"role": "system", "content": RESUME_SYSTEM},
{"role": "user", "content": resume_text[:20000]},
]
raw = deepinfra_chat(messages, api_key=api_key, model=model, temperature=temperature)
return safe_json_loads(raw)
def llm_detailed_feedback(jd_struct: Dict, resume_struct: Dict, api_key: str, model: str, temperature: float = 0.2) -> Dict:
prompt = json.dumps({"job": jd_struct, "candidate": resume_struct}, ensure_ascii=False)
messages = [
{"role": "system", "content": FEEDBACK_SYSTEM_DETAILED},
{"role": "user", "content": prompt},
]
raw = deepinfra_chat(messages, api_key=api_key, model=model, temperature=temperature)
return safe_json_loads(raw)
def llm_recommend(jd_struct: Dict, resume_struct: Dict, api_key: str, model: str, temperature: float = 0.2) -> str:
prompt = json.dumps({"job": jd_struct, "candidate": resume_struct}, ensure_ascii=False)
messages = [
{"role": "system", "content": RECOMMEND_SYSTEM},
{"role": "user", "content": prompt},
]
return deepinfra_chat(messages, api_key=api_key, model=model, temperature=temperature)
# --- Ranking Utilities ---
def prompt_for_match(jd_struct: Dict[str, Any], cv_structs: List[Dict[str, Any]], conditional_req: str) -> List[Dict[str, str]]:
compact_cands = []
for c in cv_structs:
compact_cands.append({
"name": c.get("name",""),
"email": c.get("email",""),
"phone": c.get("phone",""),
"skills": (c.get("skills_en") or c.get("skills") or [])[:50],
"experience_titles": [e.get("title","") for e in (c.get("experience") or [])][:30],
"education": [e.get("degree","") for e in (c.get("education") or [])][:20],
"languages": c.get("languages", [])[:20],
"certificates": c.get("certificates", [])[:20],
"Projects": c.get("Projects", [])[:20],
})
system = (
"You are ranking candidates for a role. Output STRICT JSON ONLY:\n"
'{ "candidates": [ { "candidate": str, "score": number (0-10), "justification": str } ] }\n'
"Scoring criteria (weight them reasonably):\n"
"- Must-have skills coverage and relevant years\n"
"- Nice-to-have skills and domain fit\n"
"- Evidence quality in work history/education\n"
"- Language/locale requirements if any\n"
"- **Conditional Requirement:** If provided, evaluate the candidate's fit against this requirement.\n"
"IMPORTANT:\n"
"- The 'candidate' MUST EXACTLY EQUAL the resume 'name' field provided.\n"
"- No extra keys. No markdown."
)
user = (
"Role (parsed JSON):\n"
f"{json.dumps(jd_struct, ensure_ascii=False)}\n\n"
"Candidates (compact JSON):\n"
f"{json.dumps(compact_cands, ensure_ascii=False)}\n\n"
f"Conditional Requirement: {conditional_req}"
)
return [{"role": "system", "content": system}, {"role": "user", "content": user}]
def parse_ranked_output(content: str) -> List[Dict[str, Any]]:
rows: List[Dict[str, Any]] = []
parsed = safe_json_loads(content or "")
if isinstance(parsed, dict) and isinstance(parsed.get("candidates"), list):
for it in parsed["candidates"]:
rows.append({
"candidate": str(it.get("candidate","")).strip(),
"score": float(it.get("score", 0)),
"justification": str(it.get("justification","")).strip(),
})
return rows
if isinstance(parsed, list):
for it in parsed:
rows.append({
"candidate": str(it.get("candidate","")).strip(),
"score": float(it.get("score", 0)),
"justification": str(it.get("justification","")).strip(),
})
return rows
if not rows:
logging.warning(f"Could not parse ranked output as JSON. Raw: {content[:500]}")
rows = [{"candidate": "RAW_OUTPUT", "score": 0.0, "justification": (content or "")[:2000]}]
return rows
# --- New: process single resume (for parallel execution) ---
def process_single_resume(f, jd_struct: Dict, api_key: str, model_name: str) -> Tuple[Dict, str, float]:
t0 = time.perf_counter()
text, fname = load_resume(f)
contacts = quick_contacts(text)
try:
raw_resume = llm_extract_resume(text, api_key=api_key, model=model_name)
except Exception as e:
logging.error(f"LLM resume extract failed for {fname}: {e}")
raw_resume = {}
cand_struct = normalize_resume(raw_resume)
if not cand_struct.get("name"):
cand_struct["name"] = os.path.splitext(fname)[0]
cand_struct.setdefault("email", cand_struct.get("email") or contacts["email_guess"])
cand_struct.setdefault("phone", cand_struct.get("phone") or contacts["phone_guess"])
try:
detailed_feedback = llm_detailed_feedback(jd_struct, cand_struct, api_key, model_name)
except Exception as e:
logging.error(f"LLM detailed feedback failed for {fname}: {e}")
detailed_feedback = {}
cand_struct['detailed_scores'] = detailed_feedback.get('scores', {})
cand_struct['summary_feedback'] = detailed_feedback.get('overall_summary', '')
cand_struct['strengths'] = detailed_feedback.get('strengths', [])
cand_struct['weaknesses'] = detailed_feedback.get('weaknesses', [])
cand_struct['missing_requirements'] = detailed_feedback.get('missing_requirements', [])
try:
cand_struct["recommendation"] = llm_recommend(jd_struct, cand_struct, api_key, model_name)
except Exception as e:
logging.error(f"LLM recommendation failed for {fname}: {e}")
cand_struct["recommendation"] = ""
t_elapsed = time.perf_counter() - t0
return cand_struct, fname, t_elapsed
def process(
jd_text,
jd_file,
resume_files,
conditional_req
):
t0 = time.perf_counter()
api_key = (DEEPINFRA_API_KEY or "").strip()
if not api_key:
raise gr.Error("Missing API key. Set DEEPINFRA_API_KEY env var.")
model_name = DEFAULT_MODEL
temperature = 0.2
top_n = 5
t_jd_start = time.perf_counter()
jd_raw = load_job_description(jd_text or "", jd_file)
if not jd_raw.strip():
raise gr.Error("Please paste a Job Description or upload a JD file.")
jd_struct = llm_extract_jd(jd_raw, api_key=api_key, model=model_name)
t_jd = time.perf_counter() - t_jd_start
logging.info(f"JD parsing time: {t_jd:.2f}s")
if not resume_files or len(resume_files) == 0:
raise gr.Error("Please upload at least one resume (PDF, DOCX, DOC, or TXT).")
parsed_cands = []
name_to_file = {}
t_parse_total = 0.0
files_to_process = resume_files[:50]
max_workers = min(8, max(1, len(files_to_process)))
futures = []
with ThreadPoolExecutor(max_workers=max_workers) as executor:
for f in files_to_process:
futures.append(executor.submit(process_single_resume, f, jd_struct, api_key, model_name))
for future in as_completed(futures):
try:
cand_struct, fname, elapsed = future.result()
parsed_cands.append(cand_struct)
name_to_file[cand_struct["name"]] = fname
t_parse_total += elapsed
except Exception as e:
logging.error(f"Error processing a resume in parallel: {e}")
avg_parse = (t_parse_total / max(1, len(parsed_cands)))
logging.info(f"Total resume parsing time: {t_parse_total:.2f}s, avg per file: {avg_parse:.2f}s")
t_match_start = time.perf_counter()
match_msgs = prompt_for_match(jd_struct, parsed_cands, conditional_req)
raw_match = deepinfra_chat(match_msgs, api_key=api_key, model=model_name, temperature=temperature)
ranked_rows = parse_ranked_output(raw_match)
t_match_total = time.perf_counter() - t_match_start
logging.info(f"Matching time: {t_match_total:.2f}s")
score_map = {r["candidate"]: (float(r.get("score", 0.0)), r.get("justification","")) for r in ranked_rows}
table_rows, export_rows = [], []
for c in parsed_cands:
nm = c.get("name","")
sc, just = score_map.get(nm, (0.0, "Not ranked by model"))
detailed_scores = c.get('detailed_scores', {})
table_rows.append({
"Candidate": nm,
"Score (0-10)": round(sc, 1),
"Skills (0-100)": detailed_scores.get('skills', 0),
"Qualifications (0-100)": detailed_scores.get('qualifications', 0),
"Responsibilities (0-100)": detailed_scores.get('responsibilities', 0),
"Experience (0-100)": detailed_scores.get('education_and_experience', 0),
"Certificates (0-100)": detailed_scores.get('certificates', 0),
"Soft Skills (0-100)": detailed_scores.get('soft_skills', 0),
"Email": c.get("email",""),
"Phone": c.get("phone",""),
"File": name_to_file.get(nm,""),
})
export_rows.append({
"candidate": nm,
"score": round(sc, 1),
**detailed_scores,
"recommendation": c.get("recommendation", ""),
"summary_feedback": c.get('summary_feedback', ''),
"strengths": ", ".join([str(s) for s in c.get("strengths", [])]),
"weaknesses": ", ".join([str(s) for s in c.get("weaknesses", [])]),
"missing_requirements": ", ".join([str(s) for s in c.get("missing_requirements", [])]),
"justification": just,
"full_json": json.dumps(c, ensure_ascii=False)
})
df_export = pd.DataFrame(export_rows)
if "score" in df_export.columns:
df_export = df_export.sort_values("score", ascending=False)
df_table = pd.DataFrame(table_rows)
if "Score (0-10)" in df_table.columns:
df_table = df_table.sort_values("Score (0-10)", ascending=False)
top_candidates_data = []
for _, row in df_export.head(top_n).iterrows():
top_candidates_data.append({
"Candidate": row.get("candidate", ""),
"Score": row.get("score", 0),
"Recommendation": row.get("recommendation", ""),
"Justification": row.get("justification", ""),
})
top_df = pd.DataFrame(top_candidates_data)
with tempfile.NamedTemporaryFile(mode='w+', delete=False, suffix='.csv', encoding='utf-8') as tmp_file:
df_export.to_csv(tmp_file.name, index=False)
csv_file_path = tmp_file.name
t_total = time.perf_counter() - t0
logging.info(f"Total process time: {t_total:.2f}s")
return df_table, csv_file_path, top_df
# --- Gradio App ---
CUSTOM_CSS = """
/* Add a subtle background gradient and use a nicer font */
.gradio-container {
background-image: linear-gradient(to top, #f3e7e9 0%, #e3eeff 99%, #e3eeff 100%);
font-family: 'IBM Plex Sans', sans-serif;
}
/* Style the input/output areas like cards */
.gradio-row > .gradio-column, .gradio-group {
border: 1px solid #E5E7EB;
border-radius: 12px;
box-shadow: 0 4px 6px -1px rgb(0 0 0 / 0.1), 0 2px 4px -2px rgb(0 0 0 / 0.1);
background-color: white;
padding: 15px;
}
/* Make the file upload area more prominent */
.gradio-file {
border: 2px dashed #A4B0BE;
border-radius: 8px;
padding: 20px;
transition: all 0.2s ease;
}
.gradio-file:hover {
border-color: #4A90E2;
background-color: #F9FAFB;
}
"""
with gr.Blocks(theme=SoftTheme.Soft(), css=CUSTOM_CSS, title="AI Resume Matcher") as demo:
gr.Markdown(
"<h1 style='text-align: center; color: #1E3A8A;'>π€ AI Resume Matcher & Ranking</h1>"
"<p style='text-align: center; color: #4B5563;'>Upload a job description and resumes to automatically rank candidates.</p>"
)
with gr.Row():
with gr.Column(scale=2):
gr.Markdown("### π Step 1: Provide Inputs")
with gr.Group():
jd_text = gr.Textbox(label="Paste Job Description", lines=8, placeholder="Paste the full job description here...")
jd_file = gr.File(label="Or Upload JD File (.txt, .pdf, .docx)")
resume_files = gr.File(
label="π Step 2: Upload Resumes (.pdf, .docx, .doc, .txt)",
file_types=[".pdf", ".docx", ".doc", ".txt"],
file_count="multiple"
)
with gr.Accordion("βοΈ Advanced Options", open=False):
conditional_req = gr.Textbox(
label="Conditional Requirement (Optional)",
placeholder="e.g., 'Must have 5+ years of Python experience'"
)
with gr.Row():
clear_btn = gr.Button("Clear All")
submit_btn = gr.Button("π Run Matching & Ranking", variant="primary", scale=2)
with gr.Column(scale=3):
gr.Markdown("### β¨ Step 3: View Results")
status_md = gr.Markdown("Status: Ready. Please provide inputs and click Run.", visible=True)
with gr.Tabs():
with gr.TabItem("π Top Candidates Summary"):
top_table = gr.DataFrame(label="Top 5 Candidates", interactive=False, headers=["Candidate", "Score", "Recommendation", "Justification"])
with gr.TabItem("π Detailed Ranking"):
results_table = gr.DataFrame(label="Full Candidate Ranking")
with gr.TabItem("π₯ Download Report"):
gr.Markdown("Click the file below to download the complete analysis, including all extracted data and feedback, in CSV format.")
csv_export = gr.File(label="Download Full Report (CSV)")
# This is a new state object to hold the results to avoid re-running the 'process' function
results_state = gr.State({})
def run_process_and_update_status(jd_text, jd_file, resume_files, conditional_req):
yield gr.Markdown(value="β³ Processing... Analyzing job description and resumes. This may take a moment.", visible=True), \
pd.DataFrame(), pd.DataFrame(), None, {} # Clear previous results while running
try:
df_table, csv_path, top_df = process(jd_text, jd_file, resume_files, conditional_req)
status_message = f"β
Done! Analyzed {len(df_table)} resumes. See results below."
results = {
"df_table": df_table,
"csv_path": csv_path,
"top_df": top_df
}
yield gr.Markdown(value=status_message, visible=True), df_table, top_df, csv_path, results
except Exception as e:
yield gr.Markdown(value=f"β Error: {e}", visible=True), \
pd.DataFrame(), pd.DataFrame(), None, {}
def clear_all():
return None, None, [], "", pd.DataFrame(), pd.DataFrame(), None, gr.Markdown(value="Status: Cleared. Ready for new inputs.", visible=True), {}
submit_btn.click(
run_process_and_update_status,
inputs=[jd_text, jd_file, resume_files, conditional_req],
outputs=[status_md, results_table, top_table, csv_export, results_state]
)
clear_btn.click(
clear_all,
inputs=[],
outputs=[jd_text, jd_file, resume_files, conditional_req, results_table, top_table, csv_export, status_md, results_state]
)
if __name__ == "__main__":
demo.launch() |