Spaces:
Sleeping
Sleeping
Upload main.py
Browse files
main.py
CHANGED
|
@@ -4,7 +4,8 @@ from typing import List, Dict, Tuple
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
-
# Optional imports for email classifier (loaded lazily)
|
|
|
|
| 8 |
try:
|
| 9 |
import torch
|
| 10 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
@@ -16,16 +17,16 @@ except Exception:
|
|
| 16 |
# =========================
|
| 17 |
# Config (env-overridable)
|
| 18 |
# =========================
|
| 19 |
-
EMAIL_CLASSIFIER_ID
|
| 20 |
-
EMAIL_BACKBONE_ID
|
| 21 |
-
THRESHOLD_TAU
|
| 22 |
-
MAX_SEQ_LEN
|
| 23 |
-
SUBJECT_TOKEN_BUDGET= int(os.getenv("SUBJECT_TOKEN_BUDGET", "64"))
|
| 24 |
-
FUSION_EMAIL_W
|
| 25 |
-
FUSION_URL_W
|
| 26 |
-
URL_OVERRIDE_HIGH
|
| 27 |
-
URL_OVERRIDE_KW
|
| 28 |
-
ALLOWLIST_SAFE_CAP
|
| 29 |
|
| 30 |
# =========================
|
| 31 |
# Simple data classes
|
|
@@ -40,21 +41,22 @@ class UrlResult:
|
|
| 40 |
class EmailResult:
|
| 41 |
p_email: float
|
| 42 |
kw_hits: List[str]
|
|
|
|
| 43 |
|
| 44 |
# =========================
|
| 45 |
-
# URL extraction & heuristics (
|
| 46 |
# =========================
|
| 47 |
URL_REGEX = r'(?i)\b((?:https?://|www\.)[^\s<>")]+)'
|
| 48 |
|
| 49 |
-
SUSPICIOUS_TLDS = {
|
|
|
|
|
|
|
| 50 |
SHORTENERS = {"bit.ly","t.co","tinyurl.com","goo.gl","ow.ly","is.gd","cutt.ly","tiny.one","lnkd.in"}
|
| 51 |
|
| 52 |
def extract_urls(text: str) -> List[str]:
|
| 53 |
if not text: return []
|
| 54 |
urls = re.findall(URL_REGEX, text)
|
| 55 |
-
|
| 56 |
-
uniq = []
|
| 57 |
-
seen = set()
|
| 58 |
for u in urls:
|
| 59 |
u = u.strip().strip(').,;\'"')
|
| 60 |
if u and u not in seen:
|
|
@@ -95,29 +97,41 @@ def score_urls(urls: List[str]) -> List[UrlResult]:
|
|
| 95 |
_tokenizer = None
|
| 96 |
_model = None
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
"
|
| 101 |
-
"
|
| 102 |
-
"
|
|
|
|
|
|
|
| 103 |
]
|
| 104 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 105 |
def load_email_model() -> Tuple[object, object]:
|
|
|
|
|
|
|
| 106 |
global _tokenizer, _model
|
| 107 |
if _tokenizer is not None and _model is not None:
|
| 108 |
return _tokenizer, _model
|
| 109 |
|
| 110 |
if AutoTokenizer is None or AutoModelForSequenceClassification is None or torch is None:
|
| 111 |
-
# environment without torch/transformers
|
| 112 |
-
return None, None
|
| 113 |
|
| 114 |
-
#
|
| 115 |
model_id = EMAIL_CLASSIFIER_ID
|
| 116 |
try:
|
| 117 |
_tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 118 |
_model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 119 |
except Exception:
|
| 120 |
-
# Fallback:
|
| 121 |
try:
|
| 122 |
_tokenizer = AutoTokenizer.from_pretrained(EMAIL_BACKBONE_ID)
|
| 123 |
_model = AutoModelForSequenceClassification.from_pretrained(
|
|
@@ -127,7 +141,7 @@ def load_email_model() -> Tuple[object, object]:
|
|
| 127 |
_tokenizer, _model = None, None
|
| 128 |
return None, None
|
| 129 |
|
| 130 |
-
# Dynamic quantization
|
| 131 |
try:
|
| 132 |
_model.eval()
|
| 133 |
_model.to("cpu")
|
|
@@ -146,62 +160,78 @@ def _truncate_for_budget(tokens_subject: List[int], tokens_body: List[int], max_
|
|
| 146 |
return subj + body
|
| 147 |
|
| 148 |
def score_email(subject: str, body: str) -> EmailResult:
|
|
|
|
|
|
|
| 149 |
text = (subject or "") + "\n" + (body or "")
|
| 150 |
-
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
| 152 |
|
| 153 |
tok, mdl = load_email_model()
|
| 154 |
if tok is None or mdl is None:
|
| 155 |
-
# fallback
|
| 156 |
-
base = 0.
|
| 157 |
-
|
|
|
|
|
|
|
| 158 |
|
| 159 |
-
#
|
| 160 |
encoded_subj = tok.encode(subject or "", add_special_tokens=False)
|
| 161 |
encoded_body = tok.encode(body or "", add_special_tokens=False)
|
| 162 |
-
input_ids = _truncate_for_budget(encoded_subj, encoded_body, MAX_SEQ_LEN-2, SUBJECT_TOKEN_BUDGET)
|
| 163 |
input_ids = [tok.cls_token_id] + input_ids + [tok.sep_token_id]
|
| 164 |
-
attn_mask = [1]*len(input_ids)
|
| 165 |
|
| 166 |
-
import torch
|
| 167 |
ids = torch.tensor([input_ids], dtype=torch.long)
|
| 168 |
mask = torch.tensor([attn_mask], dtype=torch.long)
|
|
|
|
| 169 |
with torch.no_grad():
|
| 170 |
out = mdl(input_ids=ids, attention_mask=mask)
|
| 171 |
if hasattr(out, "logits"):
|
| 172 |
-
logits = out.logits[0].detach().cpu().numpy().tolist()
|
| 173 |
-
# assume label 1 = phishing (prob via softmax)
|
| 174 |
import math
|
|
|
|
| 175 |
exps = [math.exp(x) for x in logits]
|
| 176 |
-
p1 = exps[1] / (exps[0] + exps[1])
|
| 177 |
p_email = float(p1)
|
| 178 |
else:
|
| 179 |
p_email = 0.5
|
| 180 |
|
| 181 |
-
#
|
| 182 |
-
p_email
|
| 183 |
-
|
|
|
|
|
|
|
| 184 |
|
| 185 |
# =========================
|
| 186 |
# Fusion
|
| 187 |
# =========================
|
| 188 |
def fuse(email_res: EmailResult, url_results: List[UrlResult], allowlist_domains: List[str]) -> Dict:
|
| 189 |
r_url_max = max([u.risk for u in url_results], default=0.0)
|
| 190 |
-
|
| 191 |
|
| 192 |
-
# Allowlist check: if any URL host in allowlist
|
| 193 |
allowlist_hit = False
|
| 194 |
for u in url_results:
|
| 195 |
h = url_host(u.url)
|
| 196 |
-
if any(h.endswith(d.lower()) for d in allowlist_domains):
|
| 197 |
allowlist_hit = True
|
| 198 |
break
|
| 199 |
|
|
|
|
| 200 |
r_total = FUSION_EMAIL_W * email_res.p_email + FUSION_URL_W * r_url_max
|
| 201 |
|
|
|
|
|
|
|
| 202 |
if (r_url_max >= URL_OVERRIDE_HIGH) or (kw_flag and r_url_max >= URL_OVERRIDE_KW):
|
| 203 |
r_total = max(r_total, 0.90)
|
| 204 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 205 |
if allowlist_hit:
|
| 206 |
r_total = min(r_total, ALLOWLIST_SAFE_CAP)
|
| 207 |
|
|
@@ -211,6 +241,8 @@ def fuse(email_res: EmailResult, url_results: List[UrlResult], allowlist_domains
|
|
| 211 |
"R_url_max": round(r_url_max, 3),
|
| 212 |
"R_total": round(r_total, 3),
|
| 213 |
"kw_hits": email_res.kw_hits,
|
|
|
|
|
|
|
| 214 |
"allowlist_hit": allowlist_hit,
|
| 215 |
"verdict": verdict
|
| 216 |
}
|
|
@@ -219,17 +251,19 @@ def fuse(email_res: EmailResult, url_results: List[UrlResult], allowlist_domains
|
|
| 219 |
# Gradio UI
|
| 220 |
# =========================
|
| 221 |
with gr.Blocks(title="PhishingMail-Lab") as demo:
|
| 222 |
-
gr.Markdown("# 🧪 PhishingMail‑Lab\
|
| 223 |
|
| 224 |
with gr.Row():
|
| 225 |
subject = gr.Textbox(label="Subject", placeholder="Subject: Important account update")
|
| 226 |
-
body = gr.Textbox(label="Email Body (paste text or HTML)", lines=
|
| 227 |
with gr.Row():
|
| 228 |
-
allowlist = gr.Textbox(label="Allowlist domains (comma-separated)", placeholder="microsoft.com, amazon.
|
| 229 |
tau = gr.Slider(0, 1, value=THRESHOLD_TAU, step=0.01, label="Decision Threshold τ")
|
| 230 |
analyze_btn = gr.Button("Analyze")
|
| 231 |
|
| 232 |
verdict = gr.Label(label="Verdict")
|
|
|
|
|
|
|
| 233 |
fusion_json = gr.JSON(label="Fusion & Flags")
|
| 234 |
url_table = gr.Dataframe(headers=["URL","Risk","Reasons"], label="Per‑URL risk (heuristics demo)", interactive=False)
|
| 235 |
|
|
@@ -237,17 +271,27 @@ with gr.Blocks(title="PhishingMail-Lab") as demo:
|
|
| 237 |
global THRESHOLD_TAU
|
| 238 |
THRESHOLD_TAU = float(tau_val)
|
| 239 |
|
| 240 |
-
|
|
|
|
| 241 |
url_results = score_urls(urls)
|
| 242 |
allow_domains = [d.strip().lower() for d in (allowlist_text or "").split(",") if d.strip()]
|
| 243 |
|
| 244 |
email_res = score_email(subject_text or "", body_text or "")
|
| 245 |
fused = fuse(email_res, url_results, allow_domains)
|
| 246 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 247 |
rows = [[u.url, round(u.risk,3), ", ".join(u.reasons)] for u in url_results]
|
| 248 |
-
return fused["verdict"], fused, rows
|
| 249 |
|
| 250 |
-
analyze_btn.click(run, [subject, body, allowlist, tau], [verdict, fusion_json, url_table])
|
| 251 |
|
| 252 |
if __name__ == "__main__":
|
| 253 |
demo.launch()
|
|
|
|
| 4 |
|
| 5 |
import gradio as gr
|
| 6 |
|
| 7 |
+
# Optional imports for email classifier (loaded lazily).
|
| 8 |
+
# Space still runs if these aren't available (pure lexical fallback).
|
| 9 |
try:
|
| 10 |
import torch
|
| 11 |
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
|
|
|
| 17 |
# =========================
|
| 18 |
# Config (env-overridable)
|
| 19 |
# =========================
|
| 20 |
+
EMAIL_CLASSIFIER_ID = os.getenv("EMAIL_CLASSIFIER_ID", "your-username/mini-phish") # <- swap to your HF repo when ready
|
| 21 |
+
EMAIL_BACKBONE_ID = os.getenv("EMAIL_BACKBONE_ID", "microsoft/MiniLM-L6-H384-uncased")
|
| 22 |
+
THRESHOLD_TAU = float(os.getenv("THRESHOLD_TAU", "0.40"))
|
| 23 |
+
MAX_SEQ_LEN = int(os.getenv("MAX_SEQ_LEN", "320"))
|
| 24 |
+
SUBJECT_TOKEN_BUDGET = int(os.getenv("SUBJECT_TOKEN_BUDGET", "64"))
|
| 25 |
+
FUSION_EMAIL_W = float(os.getenv("FUSION_EMAIL_W", "0.6"))
|
| 26 |
+
FUSION_URL_W = float(os.getenv("FUSION_URL_W", "0.4"))
|
| 27 |
+
URL_OVERRIDE_HIGH = float(os.getenv("URL_OVERRIDE_HIGH", "0.85"))
|
| 28 |
+
URL_OVERRIDE_KW = float(os.getenv("URL_OVERRIDE_KW", "0.70"))
|
| 29 |
+
ALLOWLIST_SAFE_CAP = float(os.getenv("ALLOWLIST_SAFE_CAP", "0.15"))
|
| 30 |
|
| 31 |
# =========================
|
| 32 |
# Simple data classes
|
|
|
|
| 41 |
class EmailResult:
|
| 42 |
p_email: float
|
| 43 |
kw_hits: List[str]
|
| 44 |
+
strong_hits: List[str] # subset of kw_hits considered strong
|
| 45 |
|
| 46 |
# =========================
|
| 47 |
+
# URL extraction & heuristics (swap with your real URL model when ready)
|
| 48 |
# =========================
|
| 49 |
URL_REGEX = r'(?i)\b((?:https?://|www\.)[^\s<>")]+)'
|
| 50 |
|
| 51 |
+
SUSPICIOUS_TLDS = {
|
| 52 |
+
".xyz", ".top", ".click", ".link", ".ru", ".cn", ".country", ".gq", ".ga", ".ml", ".tk"
|
| 53 |
+
}
|
| 54 |
SHORTENERS = {"bit.ly","t.co","tinyurl.com","goo.gl","ow.ly","is.gd","cutt.ly","tiny.one","lnkd.in"}
|
| 55 |
|
| 56 |
def extract_urls(text: str) -> List[str]:
|
| 57 |
if not text: return []
|
| 58 |
urls = re.findall(URL_REGEX, text)
|
| 59 |
+
uniq, seen = [], set()
|
|
|
|
|
|
|
| 60 |
for u in urls:
|
| 61 |
u = u.strip().strip(').,;\'"')
|
| 62 |
if u and u not in seen:
|
|
|
|
| 97 |
_tokenizer = None
|
| 98 |
_model = None
|
| 99 |
|
| 100 |
+
# Strong vs normal cues (lowercase)
|
| 101 |
+
STRONG_CUES = [
|
| 102 |
+
"otp", "one-time password", "one time password", "cvv", "pin", "pan",
|
| 103 |
+
"password", "bank details", "netbanking", "debit card", "credit card",
|
| 104 |
+
"lottery", "jackpot", "prize", "reward", "winner", "you have won",
|
| 105 |
+
"send otp", "share otp", "confirm otp", "verify otp",
|
| 106 |
+
"account restricted", "reactivate account", "unlock your account"
|
| 107 |
]
|
| 108 |
|
| 109 |
+
NORMAL_CUES = [
|
| 110 |
+
"verify your account", "update your password", "immediately",
|
| 111 |
+
"within 24 hours", "suspended", "unusual activity", "confirm",
|
| 112 |
+
"login", "click", "invoice", "payment", "security alert",
|
| 113 |
+
"urgent", "limited time"
|
| 114 |
+
]
|
| 115 |
+
|
| 116 |
+
LEXICAL_CUES = sorted(set(STRONG_CUES + NORMAL_CUES))
|
| 117 |
+
|
| 118 |
def load_email_model() -> Tuple[object, object]:
|
| 119 |
+
"""Try to load EMAIL_CLASSIFIER_ID; on failure, fall back to backbone with small head.
|
| 120 |
+
Apply dynamic int8 quantization for CPU if available."""
|
| 121 |
global _tokenizer, _model
|
| 122 |
if _tokenizer is not None and _model is not None:
|
| 123 |
return _tokenizer, _model
|
| 124 |
|
| 125 |
if AutoTokenizer is None or AutoModelForSequenceClassification is None or torch is None:
|
| 126 |
+
return None, None # environment without torch/transformers
|
|
|
|
| 127 |
|
| 128 |
+
# Preferred classifier
|
| 129 |
model_id = EMAIL_CLASSIFIER_ID
|
| 130 |
try:
|
| 131 |
_tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 132 |
_model = AutoModelForSequenceClassification.from_pretrained(model_id)
|
| 133 |
except Exception:
|
| 134 |
+
# Fallback: backbone + fresh 2-class head
|
| 135 |
try:
|
| 136 |
_tokenizer = AutoTokenizer.from_pretrained(EMAIL_BACKBONE_ID)
|
| 137 |
_model = AutoModelForSequenceClassification.from_pretrained(
|
|
|
|
| 141 |
_tokenizer, _model = None, None
|
| 142 |
return None, None
|
| 143 |
|
| 144 |
+
# Dynamic quantization (CPU)
|
| 145 |
try:
|
| 146 |
_model.eval()
|
| 147 |
_model.to("cpu")
|
|
|
|
| 160 |
return subj + body
|
| 161 |
|
| 162 |
def score_email(subject: str, body: str) -> EmailResult:
|
| 163 |
+
"""Return EmailResult with probability + hit lists.
|
| 164 |
+
Strong cues push higher risk even without a model (email-only scams)."""
|
| 165 |
text = (subject or "") + "\n" + (body or "")
|
| 166 |
+
low = text.lower()
|
| 167 |
+
|
| 168 |
+
strong_hits = [c for c in STRONG_CUES if c in low]
|
| 169 |
+
normal_hits = [c for c in NORMAL_CUES if c in low]
|
| 170 |
+
all_hits = sorted(set(strong_hits + normal_hits))
|
| 171 |
|
| 172 |
tok, mdl = load_email_model()
|
| 173 |
if tok is None or mdl is None:
|
| 174 |
+
# Pure lexical fallback (no model available):
|
| 175 |
+
base = 0.10
|
| 176 |
+
p_email = base + 0.18 * len(strong_hits) + 0.07 * len(normal_hits)
|
| 177 |
+
p_email = float(max(0.01, min(0.99, p_email)))
|
| 178 |
+
return EmailResult(p_email=p_email, kw_hits=all_hits, strong_hits=strong_hits)
|
| 179 |
|
| 180 |
+
# Model path (MiniLM or your classifier)
|
| 181 |
encoded_subj = tok.encode(subject or "", add_special_tokens=False)
|
| 182 |
encoded_body = tok.encode(body or "", add_special_tokens=False)
|
| 183 |
+
input_ids = _truncate_for_budget(encoded_subj, encoded_body, MAX_SEQ_LEN - 2, SUBJECT_TOKEN_BUDGET)
|
| 184 |
input_ids = [tok.cls_token_id] + input_ids + [tok.sep_token_id]
|
| 185 |
+
attn_mask = [1] * len(input_ids)
|
| 186 |
|
|
|
|
| 187 |
ids = torch.tensor([input_ids], dtype=torch.long)
|
| 188 |
mask = torch.tensor([attn_mask], dtype=torch.long)
|
| 189 |
+
|
| 190 |
with torch.no_grad():
|
| 191 |
out = mdl(input_ids=ids, attention_mask=mask)
|
| 192 |
if hasattr(out, "logits"):
|
|
|
|
|
|
|
| 193 |
import math
|
| 194 |
+
logits = out.logits[0].detach().cpu().numpy().tolist()
|
| 195 |
exps = [math.exp(x) for x in logits]
|
| 196 |
+
p1 = exps[1] / (exps[0] + exps[1]) # assume label 1 = phishing
|
| 197 |
p_email = float(p1)
|
| 198 |
else:
|
| 199 |
p_email = 0.5
|
| 200 |
|
| 201 |
+
# Nudge with cues: stronger boost for strong hits
|
| 202 |
+
p_email += 0.10 * len(strong_hits) + 0.03 * len(normal_hits)
|
| 203 |
+
p_email = float(max(0.01, min(0.99, p_email)))
|
| 204 |
+
|
| 205 |
+
return EmailResult(p_email=p_email, kw_hits=all_hits, strong_hits=strong_hits)
|
| 206 |
|
| 207 |
# =========================
|
| 208 |
# Fusion
|
| 209 |
# =========================
|
| 210 |
def fuse(email_res: EmailResult, url_results: List[UrlResult], allowlist_domains: List[str]) -> Dict:
|
| 211 |
r_url_max = max([u.risk for u in url_results], default=0.0)
|
| 212 |
+
no_urls = (len(url_results) == 0)
|
| 213 |
|
| 214 |
+
# Allowlist check: if any URL host in allowlist (only matters when URLs exist)
|
| 215 |
allowlist_hit = False
|
| 216 |
for u in url_results:
|
| 217 |
h = url_host(u.url)
|
| 218 |
+
if any(h.endswith(d.strip().lower()) for d in allowlist_domains if d.strip()):
|
| 219 |
allowlist_hit = True
|
| 220 |
break
|
| 221 |
|
| 222 |
+
# Base fusion
|
| 223 |
r_total = FUSION_EMAIL_W * email_res.p_email + FUSION_URL_W * r_url_max
|
| 224 |
|
| 225 |
+
# URL-driven overrides
|
| 226 |
+
kw_flag = 1 if email_res.kw_hits else 0
|
| 227 |
if (r_url_max >= URL_OVERRIDE_HIGH) or (kw_flag and r_url_max >= URL_OVERRIDE_KW):
|
| 228 |
r_total = max(r_total, 0.90)
|
| 229 |
|
| 230 |
+
# Email-only strong-cue override
|
| 231 |
+
if no_urls and len(email_res.strong_hits) > 0:
|
| 232 |
+
r_total = max(r_total, 0.85)
|
| 233 |
+
|
| 234 |
+
# Allowlist cap
|
| 235 |
if allowlist_hit:
|
| 236 |
r_total = min(r_total, ALLOWLIST_SAFE_CAP)
|
| 237 |
|
|
|
|
| 241 |
"R_url_max": round(r_url_max, 3),
|
| 242 |
"R_total": round(r_total, 3),
|
| 243 |
"kw_hits": email_res.kw_hits,
|
| 244 |
+
"strong_hits": email_res.strong_hits,
|
| 245 |
+
"no_urls": no_urls,
|
| 246 |
"allowlist_hit": allowlist_hit,
|
| 247 |
"verdict": verdict
|
| 248 |
}
|
|
|
|
| 251 |
# Gradio UI
|
| 252 |
# =========================
|
| 253 |
with gr.Blocks(title="PhishingMail-Lab") as demo:
|
| 254 |
+
gr.Markdown("# 🧪 PhishingMail‑Lab\n**POC** — Free‑tier friendly hybrid (email + URL) with explainable cues.")
|
| 255 |
|
| 256 |
with gr.Row():
|
| 257 |
subject = gr.Textbox(label="Subject", placeholder="Subject: Important account update")
|
| 258 |
+
body = gr.Textbox(label="Email Body (paste text or HTML)", lines=12, placeholder="Paste the email content here...")
|
| 259 |
with gr.Row():
|
| 260 |
+
allowlist = gr.Textbox(label="Allowlist domains (comma-separated)", placeholder="microsoft.com, amazon.in")
|
| 261 |
tau = gr.Slider(0, 1, value=THRESHOLD_TAU, step=0.01, label="Decision Threshold τ")
|
| 262 |
analyze_btn = gr.Button("Analyze")
|
| 263 |
|
| 264 |
verdict = gr.Label(label="Verdict")
|
| 265 |
+
# NEW: context banner right under verdict
|
| 266 |
+
context_banner = gr.Markdown(visible=False)
|
| 267 |
fusion_json = gr.JSON(label="Fusion & Flags")
|
| 268 |
url_table = gr.Dataframe(headers=["URL","Risk","Reasons"], label="Per‑URL risk (heuristics demo)", interactive=False)
|
| 269 |
|
|
|
|
| 271 |
global THRESHOLD_TAU
|
| 272 |
THRESHOLD_TAU = float(tau_val)
|
| 273 |
|
| 274 |
+
# Extract URLs from both subject and body (keeps it simple)
|
| 275 |
+
urls = list(dict.fromkeys(extract_urls((subject_text or "") + "\n" + (body_text or "")))) # uniq & ordered
|
| 276 |
url_results = score_urls(urls)
|
| 277 |
allow_domains = [d.strip().lower() for d in (allowlist_text or "").split(",") if d.strip()]
|
| 278 |
|
| 279 |
email_res = score_email(subject_text or "", body_text or "")
|
| 280 |
fused = fuse(email_res, url_results, allow_domains)
|
| 281 |
|
| 282 |
+
# Build banner text/visibility
|
| 283 |
+
banners = []
|
| 284 |
+
if fused.get("no_urls"):
|
| 285 |
+
banners.append("⚠️ **No URLs found** — decision based **only on email body**.")
|
| 286 |
+
if fused.get("allowlist_hit"):
|
| 287 |
+
banners.append("🛈 **Allowlist active** — risk **capped** for trusted domain.")
|
| 288 |
+
banner_text = "<br>".join(banners) if banners else ""
|
| 289 |
+
banner_visible = bool(banners)
|
| 290 |
+
|
| 291 |
rows = [[u.url, round(u.risk,3), ", ".join(u.reasons)] for u in url_results]
|
| 292 |
+
return fused["verdict"], gr.update(value=banner_text, visible=banner_visible), fused, rows
|
| 293 |
|
| 294 |
+
analyze_btn.click(run, [subject, body, allowlist, tau], [verdict, context_banner, fusion_json, url_table])
|
| 295 |
|
| 296 |
if __name__ == "__main__":
|
| 297 |
demo.launch()
|