app
Browse files- __pycache__/normflows.cpython-310.pyc +0 -0
- app.py +9 -5
- normflows.py +1 -1
__pycache__/normflows.cpython-310.pyc
CHANGED
|
Binary files a/__pycache__/normflows.cpython-310.pyc and b/__pycache__/normflows.cpython-310.pyc differ
|
|
|
app.py
CHANGED
|
@@ -6,13 +6,16 @@ import seaborn as sns
|
|
| 6 |
import pandas as pd
|
| 7 |
|
| 8 |
uploaded_file = st.file_uploader("Choose original dataset")
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
|
| 13 |
-
def compute():
|
| 14 |
-
api = nflow(dim=
|
| 15 |
-
api.compile(optim=torch.optim.ASGD,bw=bw,lr=0.0001,wd=
|
| 16 |
|
| 17 |
my_bar = st.progress(0)
|
| 18 |
|
|
@@ -39,5 +42,6 @@ def compute():
|
|
| 39 |
|
| 40 |
|
| 41 |
if uploaded_file is not None:
|
| 42 |
-
|
|
|
|
| 43 |
st.download_button('Download generated CSV', pd.DataFrame(samples).to_csv(), 'text/csv')
|
|
|
|
| 6 |
import pandas as pd
|
| 7 |
|
| 8 |
uploaded_file = st.file_uploader("Choose original dataset")
|
| 9 |
+
col1,col2,col3 = st.columns(3)
|
| 10 |
+
bw = col1.number_input('Scale',value=3.05)
|
| 11 |
+
wd = col2.number_input('Weight Decay',value=0.0002)
|
| 12 |
+
iters = col3.number_input('Iterations',value=400)
|
| 13 |
|
| 14 |
|
| 15 |
|
| 16 |
+
def compute(dim):
|
| 17 |
+
api = nflow(dim=dim,latent=16,dataset=uploaded_file)
|
| 18 |
+
api.compile(optim=torch.optim.ASGD,bw=bw,lr=0.0001,wd=wd)
|
| 19 |
|
| 20 |
my_bar = st.progress(0)
|
| 21 |
|
|
|
|
| 42 |
|
| 43 |
|
| 44 |
if uploaded_file is not None:
|
| 45 |
+
dim = pd.read_csv(uploaded_file).shape[-1]
|
| 46 |
+
samples=compute(dim)
|
| 47 |
st.download_button('Download generated CSV', pd.DataFrame(samples).to_csv(), 'text/csv')
|
normflows.py
CHANGED
|
@@ -330,7 +330,7 @@ class nflow():
|
|
| 330 |
z_k, sum_log_det = self.model(samples)
|
| 331 |
log_p_x = self.density.log_prob(z_k)
|
| 332 |
# Reverse KL since we can evaluate target density but can't sample
|
| 333 |
-
loss = (-sum_log_det - (log_p_x)).mean()
|
| 334 |
|
| 335 |
self.opt.zero_grad()
|
| 336 |
loss.backward()
|
|
|
|
| 330 |
z_k, sum_log_det = self.model(samples)
|
| 331 |
log_p_x = self.density.log_prob(z_k)
|
| 332 |
# Reverse KL since we can evaluate target density but can't sample
|
| 333 |
+
loss = (-sum_log_det - (log_p_x)).mean()/self.density.n
|
| 334 |
|
| 335 |
self.opt.zero_grad()
|
| 336 |
loss.backward()
|