Spaces:
Runtime error
Runtime error
| import spaces | |
| import os | |
| import gradio as gr | |
| from pdf2image import convert_from_path | |
| from byaldi import RAGMultiModalModel | |
| from transformers import Qwen2VLForConditionalGeneration, AutoProcessor | |
| from qwen_vl_utils import process_vision_info | |
| import torch | |
| import torchvision | |
| import subprocess | |
| # Run the commands from setup.sh to install poppler-utils | |
| def install_poppler(): | |
| try: | |
| subprocess.run(["pdfinfo"], check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE) | |
| except FileNotFoundError: | |
| print("Poppler not found. Installing...") | |
| # Run the setup commands | |
| subprocess.run("apt-get update", shell=True) | |
| subprocess.run("apt-get install -y poppler-utils", shell=True) | |
| # Call the Poppler installation check | |
| install_poppler() | |
| # Install flash-attn if not already installed | |
| subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) | |
| # Load the RAG Model and the Qwen2-VL-2B-Instruct model | |
| RAG = RAGMultiModalModel.from_pretrained("vidore/colpali") | |
| model = Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", | |
| trust_remote_code=True, torch_dtype=torch.bfloat16).cuda().eval() | |
| processor = AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True) | |
| def process_pdf_and_query(pdf_file, user_query): | |
| images = convert_from_path(pdf_file.name) | |
| num_images = len(images) | |
| RAG.index( | |
| input_path=pdf_file.name, | |
| index_name="image_index", | |
| store_collection_with_index=False, | |
| overwrite=True | |
| ) | |
| # Search the query in the RAG model | |
| results = RAG.search(user_query, k=1) | |
| if not results: | |
| return "No results found.", num_images | |
| # Retrieve the page number and process image | |
| image_index = results[0]["page_num"] - 1 | |
| messages = [ | |
| { | |
| "role": "user", | |
| "content": [ | |
| { | |
| "type": "image", | |
| "image": images[image_index], | |
| }, | |
| {"type": "text", "text": user_query}, | |
| ], | |
| } | |
| ] | |
| text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) | |
| image_inputs, video_inputs = process_vision_info(messages) | |
| inputs = processor( | |
| text=[text], | |
| images=image_inputs, | |
| videos=video_inputs, | |
| padding=True, | |
| return_tensors="pt", | |
| ) | |
| inputs = inputs.to("cuda") | |
| generated_ids = model.generate(**inputs, max_new_tokens=50) | |
| generated_ids_trimmed = [ | |
| out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids) | |
| ] | |
| output_text = processor.batch_decode( | |
| generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False | |
| ) | |
| return output_text[0], num_images | |
| css = """ | |
| .duplicate-button { | |
| background-color: #6272a4; | |
| color: white; | |
| font-weight: bold; | |
| border-radius: 5px; | |
| margin-top: 20px; | |
| padding: 10px; | |
| text-align: center; | |
| } | |
| .gradio-container { | |
| background-color: #282a36; | |
| color: #f8f8f2; | |
| font-family: 'Courier New', Courier, monospace; | |
| padding: 20px; | |
| border-radius: 10px; | |
| box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); | |
| } | |
| """ | |
| explanation = """ | |
| ### Multimodal RAG with Image Query | |
| This demo showcases the **Multimodal RAG (Retriever-Augmented Generation)** model. The RAG system integrates retrieval and generation, allowing it to retrieve relevant information from a multimodal database (like PDFs with text and images) and then generate detailed responses. | |
| We use **ColPali**, a state-of-the-art multimodal retriever, combined with the **Byaldi** library from **answer.ai**, which simplifies using ColPali. The language model used for generating answers is **Qwen/Qwen2-VL-2B-Instruct**, a powerful vision-language model capable of understanding both text and images. | |
| """ | |
| footer = """ | |
| <div style="text-align: center; margin-top: 20px;"> | |
| <a href="https://www.linkedin.com/in/pejman-ebrahimi-4a60151a7/" target="_blank">LinkedIn</a> | | |
| <a href="https://github.com/arad1367" target="_blank">GitHub</a> | | |
| <a href="https://arad1367.pythonanywhere.com/" target="_blank">Live demo of my PhD defense</a> | | |
| <a href="https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct" target="_blank">Qwen/Qwen2-VL-2B-Instruct</a> | | |
| <a href="https://github.com/AnswerDotAI/byaldi" target="_blank">Byaldi</a> | | |
| <a href="https://github.com/illuin-tech/colpali" target="_blank">ColPali</a> | |
| <br> | |
| Made with π by Pejman Ebrahimi | |
| </div> | |
| """ | |
| pdf_input = gr.File(label="Upload PDF") | |
| query_input = gr.Textbox(label="Enter your query", placeholder="Ask a question about the PDF") | |
| output_text = gr.Textbox(label="Model Answer") | |
| output_images = gr.Textbox(label="Number of Images in PDF") | |
| duplicate_button = gr.DuplicateButton(value="Duplicate Space for private use", elem_classes="duplicate-button") | |
| # Launch the Gradio app | |
| demo = gr.Interface( | |
| fn=process_pdf_and_query, | |
| inputs=[pdf_input, query_input], | |
| outputs=[output_text, output_images], | |
| title="Multimodal RAG with Image Query - By Pejman Ebrahimi - Please like the space if it is useful", | |
| theme='freddyaboulton/dracula_revamped', | |
| css=css, | |
| description=explanation, | |
| allow_flagging="auto" | |
| ) | |
| with demo: | |
| gr.HTML(footer) | |
| duplicate_button | |
| demo.launch(debug=True) | |