Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import gradio as gr | |
| from PIL import Image, ImageDraw, ImageFont | |
| from ultralytics import YOLO | |
| from huggingface_hub import hf_hub_download | |
| import cv2 | |
| import tempfile | |
| import numpy as np | |
| def download_model(model_filename): | |
| """ | |
| Downloads a YOLO model from the Hugging Face Hub. | |
| This function fetches a specified YOLO model file from the | |
| 'atalaydenknalbant/Yolov13' repository on the Hugging Face Hub. | |
| Args: | |
| model_filename (str): The name of the model file to download | |
| (e.g., 'yolov13n.pt'). | |
| Returns: | |
| str: The local path to the downloaded model file. | |
| """ | |
| return hf_hub_download(repo_id="atalaydenknalbant/Yolov13", filename=model_filename) | |
| def yolo_inference(input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection): | |
| """ | |
| Performs object detection inference using a YOLOv13 model on either an image or a video. | |
| This function downloads the specified YOLO model, then applies it to the | |
| provided input. For images, it returns an annotated image. For videos, it | |
| processes each frame and returns an annotated video. Error handling for | |
| missing inputs is included, returning blank outputs with messages. | |
| Args: | |
| input_type (str): Specifies the input type, either "Image" or "Video". | |
| image (PIL.Image.Image or None): The input image if `input_type` is "Image". | |
| None otherwise. | |
| video (str or None): The path to the input video file if `input_type` is "Video". | |
| None otherwise. | |
| model_id (str): The identifier of the YOLO model to use (e.g., 'yolov13n.pt'). | |
| conf_threshold (float): The confidence threshold for object detection. | |
| Detections with lower confidence are discarded. | |
| iou_threshold (float): The Intersection over Union (IoU) threshold for | |
| Non-Maximum Suppression (NMS). | |
| max_detection (int): The maximum number of detections to return per image or frame. | |
| Returns: | |
| tuple: A tuple containing two elements: | |
| - PIL.Image.Image or None: The annotated image if `input_type` was "Image", | |
| otherwise None. | |
| - str or None: The path to the annotated video file if `input_type` was "Video", | |
| otherwise None. | |
| """ | |
| model_path = download_model(model_id) | |
| if input_type == "Image": | |
| if image is None: | |
| width, height = 640, 480 | |
| blank_image = Image.new("RGB", (width, height), color="white") | |
| draw = ImageDraw.Draw(blank_image) | |
| message = "No image provided" | |
| font = ImageFont.load_default(size=40) | |
| bbox = draw.textbbox((0, 0), message, font=font) | |
| text_width = bbox[2] - bbox[0] | |
| text_height = bbox[3] - bbox[1] | |
| text_x = (width - text_width) / 2 | |
| text_y = (height - text_height) / 2 | |
| draw.text((text_x, text_y), message, fill="black", font=font) | |
| return blank_image, None | |
| model = YOLO(model_path) | |
| results = model.predict( | |
| source=image, | |
| conf=conf_threshold, | |
| iou=iou_threshold, | |
| imgsz=640, | |
| max_det=max_detection, | |
| show_labels=True, | |
| show_conf=True, | |
| ) | |
| for r in results: | |
| image_array = r.plot() | |
| annotated_image = Image.fromarray(image_array[..., ::-1]) | |
| return annotated_image, None | |
| elif input_type == "Video": | |
| if video is None: | |
| width, height = 640, 480 | |
| blank_image = Image.new("RGB", (width, height), color="white") | |
| draw = ImageDraw.Draw(blank_image) | |
| message = "No video provided" | |
| font = ImageFont.load_default(size=40) | |
| bbox = draw.textbbox((0, 0), message, font=font) | |
| text_width = bbox[2] - bbox[0] | |
| text_height = bbox[3] - bbox[1] | |
| text_x = (width - text_width) / 2 | |
| text_y = (height - text_height) / 2 | |
| draw.text((text_x, text_y), message, fill="black", font=font) | |
| temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name | |
| fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
| out = cv2.VideoWriter(temp_video_file, fourcc, 1, (width, height)) | |
| frame = cv2.cvtColor(np.array(blank_image), cv2.COLOR_RGB2BGR) | |
| out.write(frame) | |
| out.release() | |
| return None, temp_video_file | |
| model = YOLO(model_path) | |
| cap = cv2.VideoCapture(video) | |
| fps = cap.get(cv2.CAP_PROP_FPS) if cap.get(cv2.CAP_PROP_FPS) > 0 else 25 | |
| frames = [] | |
| while True: | |
| ret, frame = cap.read() | |
| if not ret: | |
| break | |
| pil_frame = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
| results = model.predict( | |
| source=pil_frame, | |
| conf=conf_threshold, | |
| iou=iou_threshold, | |
| imgsz=640, | |
| max_det=max_detection, | |
| show_labels=True, | |
| show_conf=True, | |
| ) | |
| for r in results: | |
| annotated_frame_array = r.plot() | |
| annotated_frame = cv2.cvtColor(annotated_frame_array, cv2.COLOR_BGR2RGB) | |
| frames.append(annotated_frame) | |
| cap.release() | |
| if not frames: | |
| return None, None | |
| height_out, width_out, _ = frames[0].shape | |
| temp_video_file = tempfile.NamedTemporaryFile(suffix=".mp4", delete=False).name | |
| fourcc = cv2.VideoWriter_fourcc(*"mp4v") | |
| out = cv2.VideoWriter(temp_video_file, fourcc, fps, (width_out, height_out)) | |
| for f in frames: | |
| f_bgr = cv2.cvtColor(f, cv2.COLOR_RGB2BGR) | |
| out.write(f_bgr) | |
| out.release() | |
| return None, temp_video_file | |
| return None, None | |
| def update_visibility(input_type): | |
| """ | |
| Adjusts the visibility of Gradio components based on the selected input type. | |
| This function dynamically shows or hides the image and video input/output | |
| components in the Gradio interface to ensure only relevant fields are visible. | |
| Args: | |
| input_type (str): The selected input type, either "Image" or "Video". | |
| Returns: | |
| tuple: A tuple of `gr.update` objects for the visibility of: | |
| (image input, video input, image output, video output). | |
| """ | |
| if input_type == "Image": | |
| return gr.update(visible=True), gr.update(visible=False), gr.update(visible=True), gr.update(visible=False) | |
| else: | |
| return gr.update(visible=False), gr.update(visible=True), gr.update(visible=False), gr.update(visible=True) | |
| def yolo_inference_for_examples(image, model_id, conf_threshold, iou_threshold, max_detection): | |
| """ | |
| Wrapper function for `yolo_inference` specifically for Gradio examples that use images. | |
| This function simplifies the `yolo_inference` call for the `gr.Examples` component, | |
| ensuring only image-based inference is performed for predefined examples. | |
| Args: | |
| image (PIL.Image.Image): The input image for the example. | |
| model_id (str): The identifier of the YOLO model to use. | |
| conf_threshold (float): The confidence threshold. | |
| iou_threshold (float): The IoU threshold. | |
| max_detection (int): The maximum number of detections. | |
| Returns: | |
| PIL.Image.Image or None: The annotated image. Returns None if no image is processed. | |
| """ | |
| annotated_image, _ = yolo_inference( | |
| input_type="Image", | |
| image=image, | |
| video=None, | |
| model_id=model_id, | |
| conf_threshold=conf_threshold, | |
| iou_threshold=iou_threshold, | |
| max_detection=max_detection | |
| ) | |
| return annotated_image | |
| theme = gr.themes.Ocean(primary_hue="blue", secondary_hue="pink") | |
| with gr.Blocks(theme=theme) as app: | |
| gr.Markdown("# Yolov13: Object Detection") | |
| gr.Markdown("Upload an image or video for inference using the latest YOLOv13 models.") | |
| gr.Markdown("π **Note:** Better-trained models will be deployed as they become available.") | |
| with gr.Accordion("Paper and Citation", open=False): | |
| gr.Markdown(""" | |
| This application is based on the research from the paper: **YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception**. | |
| - **Authors:** Mengqi Lei, Siqi Li, Yihong Wu, et al. | |
| - **Preprint Link:** [https://arxiv.org/abs/2506.17733](https://arxiv.org/abs/2506.17733) | |
| **BibTeX:** | |
| ``` | |
| @article{yolov13, | |
| title={YOLOv13: Real-Time Object Detection with Hypergraph-Enhanced Adaptive Visual Perception}, | |
| author={Lei, Mengqi and Li, Siqi and Wu, Yihong and et al.}, | |
| journal={arXiv preprint arXiv:2506.17733}, | |
| year={2025} | |
| } | |
| ``` | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| image = gr.Image(type="pil", label="Image", visible=True) | |
| video = gr.Video(label="Video", visible=False) | |
| input_type = gr.Radio( | |
| choices=["Image", "Video"], | |
| value="Image", | |
| label="Input Type", | |
| ) | |
| model_id = gr.Dropdown( | |
| label="Model Name", | |
| choices=[ | |
| 'yolov13n.pt', 'yolov13s.pt', 'yolov13l.pt', 'yolov13x.pt', | |
| ], | |
| value="yolov13n.pt", | |
| ) | |
| conf_threshold = gr.Slider(minimum=0, maximum=1, value=0.35, label="Confidence Threshold") | |
| iou_threshold = gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU Threshold") | |
| max_detection = gr.Slider(minimum=1, maximum=300, step=1, value=300, label="Max Detection") | |
| infer_button = gr.Button("Detect Objects", variant="primary") | |
| with gr.Column(): | |
| output_image = gr.Image(type="pil", show_label=False, show_share_button=False, visible=True) | |
| output_video = gr.Video(show_label=False, show_share_button=False, visible=False) | |
| gr.DeepLinkButton(variant="primary") | |
| input_type.change( | |
| fn=update_visibility, | |
| inputs=input_type, | |
| outputs=[image, video, output_image, output_video], | |
| ) | |
| infer_button.click( | |
| fn=yolo_inference, | |
| inputs=[input_type, image, video, model_id, conf_threshold, iou_threshold, max_detection], | |
| outputs=[output_image, output_video], | |
| ) | |
| gr.Examples( | |
| examples=[ | |
| ["zidane.jpg", "yolov13s.pt", 0.35, 0.45, 300], | |
| ["bus.jpg", "yolov13l.pt", 0.35, 0.45, 300], | |
| ["yolo_vision.jpg", "yolov13x.pt", 0.35, 0.45, 300], | |
| ], | |
| fn=yolo_inference_for_examples, | |
| inputs=[image, model_id, conf_threshold, iou_threshold, max_detection], | |
| outputs=[output_image], | |
| label="Examples (Images)", | |
| ) | |
| if __name__ == '__main__': | |
| app.launch(mcp_server=True) |