File size: 23,416 Bytes
e1834e2 7547d3d b20408a fd7d7b0 b20408a fd7d7b0 b20408a fd7d7b0 b20408a fd7d7b0 996864d fd7d7b0 b8ddc1d 996864d 24df928 996864d 5496e8b 24df928 5496e8b de8bfa9 24df928 7f7e00b 24df928 7daa200 5496e8b 298d1b7 a3d6cea fd7d7b0 5dae906 050899a 21fbb3f fd7d7b0 b20408a 5dae906 fd7d7b0 9a103c5 050899a 5dae906 fd7d7b0 f114505 36cb3bb fd47974 04e0cb5 fd47974 7f7e00b fd47974 de8bfa9 fd47974 84f4297 de8bfa9 84f4297 753ed68 84f4297 de8bfa9 84f4297 de8bfa9 84f4297 f114505 84f4297 de8bfa9 84f4297 753ed68 84f4297 de8bfa9 84f4297 de8bfa9 84f4297 fd47974 84f4297 fd47974 36cb3bb fd47974 de8bfa9 36cb3bb de8bfa9 753ed68 de8bfa9 fd47974 de8bfa9 4195198 753ed68 4195198 753ed68 4195198 753ed68 4195198 753ed68 4195198 de8bfa9 fd47974 7b16cb8 1f68202 569a4bf de8bfa9 1f68202 569a4bf 1f68202 569a4bf 49af576 569a4bf 4195198 d3fbd27 4195198 d3fbd27 4195198 d3fbd27 76cfaea 4195198 569a4bf 7b16cb8 de8bfa9 7b16cb8 9c3db7a c81be02 9c3db7a 7b16cb8 9c3db7a 7b16cb8 fa072ac 7b16cb8 84701cb 9f83aae 84701cb 6c3e9d6 84701cb 70d1374 e1834e2 70d1374 e1834e2 70d1374 e1834e2 36cb3bb 70d1374 7b16cb8 de8bfa9 4195198 de8bfa9 753ed68 de8bfa9 49af576 de8bfa9 753ed68 de8bfa9 4195198 49af576 4195198 7b16cb8 de8bfa9 7b16cb8 9c3db7a 389922e 7b16cb8 9c3db7a 389922e 9c3db7a 143a130 ff526aa 143a130 ff526aa 143a130 5496e8b be9f36c 5496e8b cfe0a62 5496e8b de8bfa9 5496e8b be9f36c 5496e8b 1f68202 be9f36c 0652dbc a398fcf 0652dbc dba1cca be9f36c 0652dbc 5496e8b 0652dbc dba1cca 0652dbc 5496e8b 7a53840 9c3db7a 88efd8e 9c3db7a feec46b 9c3db7a 2772476 91c7951 6b695ad 2329a6b ca77042 2329a6b 589ac10 8029c32 4195198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 |
# externalID (from database) and PROLIFIC_PID (from URL parameters as query parameter)
# Original code from https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat
# Modified for trust game purposes
import gradio as gr
import time
import random
import json
import mysql.connector
import os
import csv
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
from threading import Thread
from typing import Iterator
from huggingface_hub import Repository, hf_hub_download
from datetime import datetime
# for fetch_personalized_data
import mysql.connector
import urllib.parse
import urllib.request
# for saving chat history as JSON - not used
import atexit
import os
from huggingface_hub import HfApi, HfFolder
# for saving chat history as dataset - not used
import huggingface_hub
from huggingface_hub import Repository
from datetime import datetime
# for saving chat history as dataset - used
import sqlite3
import huggingface_hub
import gradio as gr
import pandas as pd
import shutil
import os
import datetime
from apscheduler.schedulers.background import BackgroundScheduler
DATASET_REPO_URL = "https://huggingface.co/datasets/botsi/trust-game-llama-2-chat-history"
DATA_DIRECTORY = "data" # Separate directory for storing data files
DATA_FILENAME = "7B.csv" # Default filename
DATA_FILE = os.path.join("data", DATA_FILENAME)
DB_PASSWORD = os.environ.get("DB_PASSWORD")
HF_TOKEN = os.environ.get("HF_TOKEN")
print("is none?", HF_TOKEN is None)
print("hfh", huggingface_hub.__version__)
repo = Repository(
local_dir=DATA_DIRECTORY, clone_from=DATASET_REPO_URL
)
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# This is your personal space to chat.
You can ask anything: From discussing strategic game tactics to enjoying casual conversation.
For example you could ask, what happened in the last round, what is your probability to win when you invest amount xy, what is my current balance etc.
"""
# License and Acceptable Use Policy by Meta
LICENSE = """
<p/>
---
This demo is governed by the [original license](https://ai.meta.com/llama/license/) and [acceptable use policy](https://ai.meta.com/llama/use-policy/).
The most recent copy of this policy can be found at ai.meta.com/llama/use-policy.
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
def fetch_personalized_data(externalID):
try:
# Connect to the database
with mysql.connector.connect(
host="3.125.179.74",
user="root",
password=DB_PASSWORD,
database="lionessdb"
) as conn:
# Create a cursor object
with conn.cursor() as cursor:
# Query to fetch relevant data from both tables based on externalID = externalID
query = """
SELECT e5390g37899_core.playerNr,
e5390g37899_core.groupNrStart,
e5390g37899_core.subjectNr,
e5390g37899_core.onPage,
e5390g37899_core.role,
e5390g37899_session.externalID,
e5390g37899_decisions.initialCredit,
e5390g37899_decisions.part,
e5390g37899_decisions.transfer1,
e5390g37899_decisions.tripledAmount1,
e5390g37899_decisions.keptForSelf1,
e5390g37899_decisions.returned1,
e5390g37899_decisions.totalRound1,
e5390g37899_decisions.transfer2,
e5390g37899_decisions.tripledAmount2,
e5390g37899_decisions.keptForSelf2,
e5390g37899_decisions.returned2,
e5390g37899_decisions.totalRound2,
e5390g37899_decisions.transfer3,
e5390g37899_decisions.tripledAmount3,
e5390g37899_decisions.keptForSelf3,
e5390g37899_decisions.returned3,
e5390g37899_decisions.totalRound3,
e5390g37899_decisions.transfer4,
e5390g37899_decisions.tripledAmount4,
e5390g37899_decisions.keptForSelf4,
e5390g37899_decisions.returned4,
e5390g37899_decisions.totalRound4,
e5390g37899_decisions.transfer5,
e5390g37899_decisions.tripledAmount5,
e5390g37899_decisions.keptForSelf5,
e5390g37899_decisions.returned5,
e5390g37899_decisions.totalRound5,
e5390g37899_decisions.transfer6,
e5390g37899_decisions.tripledAmount6,
e5390g37899_decisions.keptForSelf6
FROM e5390g37899_core
JOIN e5390g37899_session ON
e5390g37899_core.playerNr = e5390g37899_session.playerNr
JOIN e5390g37899_decisions ON
e5390g37899_core.playerNr = e5390g37899_decisions.playerNr
WHERE e5390g37899_session.externalID = %s
UNION ALL
SELECT e5390g37899_core.playerNr,
e5390g37899_core.groupNrStart,
e5390g37899_core.subjectNr,
e5390g37899_core.onPage,
e5390g37899_core.role,
e5390g37899_session.externalID,
e5390g37899_decisions.initialCredit,
e5390g37899_decisions.part,
e5390g37899_decisions.transfer1,
e5390g37899_decisions.tripledAmount1,
e5390g37899_decisions.keptForSelf1,
e5390g37899_decisions.returned1,
e5390g37899_decisions.totalRound1,
e5390g37899_decisions.transfer2,
e5390g37899_decisions.tripledAmount2,
e5390g37899_decisions.keptForSelf2,
e5390g37899_decisions.returned2,
e5390g37899_decisions.totalRound2,
e5390g37899_decisions.transfer3,
e5390g37899_decisions.tripledAmount3,
e5390g37899_decisions.keptForSelf3,
e5390g37899_decisions.returned3,
e5390g37899_decisions.totalRound3,
e5390g37899_decisions.transfer4,
e5390g37899_decisions.tripledAmount4,
e5390g37899_decisions.keptForSelf4,
e5390g37899_decisions.returned4,
e5390g37899_decisions.totalRound4,
e5390g37899_decisions.transfer5,
e5390g37899_decisions.tripledAmount5,
e5390g37899_decisions.keptForSelf5,
e5390g37899_decisions.returned5,
e5390g37899_decisions.totalRound5,
e5390g37899_decisions.transfer6,
e5390g37899_decisions.tripledAmount6,
e5390g37899_decisions.keptForSelf6
FROM e5390g37899_core
JOIN e5390g37899_session ON
e5390g37899_core.playerNr = e5390g37899_session.playerNr
JOIN e5390g37899_decisions
ON e5390g37899_core.playerNr = e5390g37899_decisions.playerNr
WHERE e5390g37899_core.groupNrStart IN (
SELECT DISTINCT groupNrStart
FROM e5390g37899_core
JOIN e5390g37899_session
ON e5390g37899_core.playerNr = e5390g37899_session.playerNr
WHERE e5390g37899_session.externalID = %s
) AND e5390g37899_session.externalID != %s
"""
cursor.execute(query,(externalID, externalID, externalID))
# Fetch data row by row
data = [{
'playerNr': row[0],
'groupNrStart': row[1],
'subjectNr': row[2],
'onPage': row[3],
'role': row[4],
'externalID': row[5],
'initialCredit': row[6],
'part': row[7],
'transfer1': row[8],
'tripledAmount1': row[9],
'keptForSelf1': row[10],
'returned1': row[11],
'totalRound1': row[12],
'transfer2': row[13],
'tripledAmount2': row[14],
'keptForSelf2': row[15],
'returned2': row[16],
'totalRound2': row[17],
'transfer3': row[18],
'tripledAmount3': row[19],
'keptForSelf3': row[20],
'returned3': row[21],
'totalRound3': row[22],
'transfer4': row[23],
'tripledAmount4': row[24],
'keptForSelf4': row[25],
'returned4': row[26],
'totalRound4': row[27],
'transfer5': row[28],
'tripledAmount5': row[29],
'keptForSelf5': row[30],
'returned5': row[31],
'totalRound5': row[32],
'transfer6': row[33],
'tripledAmount6': row[34],
'keptForSelf6': row[35]
} for row in cursor]
print(data)
return data
except mysql.connector.Error as err:
print(f"Error: {err}")
return None
def extract_variables(all_personalized_data, part):
extracted_data = {}
if part == "1":
rounds = range(1, 4) # Rounds 1-3 for part 1
elif part == "2":
rounds = range(4, 7) # Rounds 4-6 for part 2
else:
print("No data for the particular part found")
return None
for data in all_personalized_data:
role = map_role(str(data.get('role', 'unknown'))) # Get the role description
player_data = {} # Store data for the current player
for round_num in rounds:
round_key = f'round{round_num - 3 if part == "2" else round_num}' # Adjusting round numbers if part is 2
player_data[round_key] = {}
for var in ['transfer', 'tripledAmount', 'keptForSelf', 'returned', 'totalRound']:
var_name = f'{var}{round_num}'
if role == 'The Dealer' and var == 'tripledAmount':
continue # Skip adding 'tripledAmount' for the Dealer
if role == 'The Investor' and var == 'keptForSelf':
continue # Skip adding 'keptForSelf' for the Investor
if data.get(var_name) is not None:
player_data[round_key][var] = data[var_name]
# Update extracted_data with role prompt as key
if role in extracted_data:
extracted_data[role].update(player_data)
else:
extracted_data[role] = player_data
return extracted_data
def map_onPage(onPage):
# Define the mapping of onPage values to onPage_filename and onPage_prompt
onPage_mapping_dict = {
"stage411228.php": ("stage 6", "Round 1: Investor’s turn"),
"stage411229.php": ("stage 7", "Round 1: Dealer’s turn"),
"stage411230.php": ("stage 8", "Round 2: Investor’s turn"),
"stage411231.php": ("stage 9", "Round 2: Investor’s turn"),
"stage411232.php": ("stage 10", "Round 3: Investor’s turn"),
"stage411233.php": ("stage 11", "Round 3: Dealer’s turn"),
"stage411235.php": ("stage 13", "Round 1: Investor’s turn"),
"stage411236.php": ("stage 14", "Round 1: Dealer’s turn"),
"stage411237.php": ("stage 15", "Round 2: Investor’s turn"),
"stage411238.php": ("stage 16", "Round 2: Investor’s turn"),
"stage411239.php": ("stage 17", "Round 3: Investor’s turn"),
"stage411240.php": ("stage 18", "Round 3: Dealer’s turn"),
}
# Check if onPage is in the mapping
if onPage in onPage_mapping_dict:
onPage_filename, onPage_prompt = onPage_mapping_dict[onPage]
else:
# If onPage is not in the mapping, set onPage_filename and onPage_prompt to "unknown"
onPage_filename, onPage_prompt = "unknown", "unknown"
return onPage_filename, onPage_prompt
def map_role(role):
# Define the mapping of role numbers to role descriptions
role_mapping_dict = {
"1": "The Investor",
"2": "The Dealer"
}
# Check if the role is in the mapping
if role in role_mapping_dict:
role_prompt = role_mapping_dict[role]
else:
# If the role is not in the mapping, set role_prompt to "unknown"
role_prompt = "unknown"
return role_prompt
## trust-game-llama-2-7b-chat
# app.py
def get_default_system_prompt(extracted_data, onPage_prompt, role_prompt):
#BOS, EOS = "<s>", "</s>"
#BINST, EINST = "[INST]", "[/INST]"
BSYS, ESYS = "<<SYS>>\n", "\n<</SYS>>\n\n"
DEFAULT_SYSTEM_PROMPT = f""" You are a smart game assistant for a Trust Game outside of this chat.
Trust Game rules: Two players, The Investor and The Dealer, each play to maximize their own earnings.
There are 3 rounds. Every round follows the same pattern.
- First, each player gets a virtual starting credit of 10 coins.
- Investor's turn: The Investor decides how much they want to investo into a shared pot. The shared pot is tripled automatically before the Dealer's turn.
- Dealer's turn: The Dealer can keep and return as much of the tripled amount as they like. Their virtual starting credit remains untouched.
Earnings from each round are not transferred to the next round. Each or your answers should be maximum 2 sentences long.
Answer in a consistent style. If you are unsure about an answer, do not guess.
Currently it is {role_prompt}’s turn so you are assisting {role_prompt}. Answer directly to the player. The currency is coins.
The game is currently in {onPage_prompt}.
This is what happened in the last rounds: {extracted_data}.
"""
print(DEFAULT_SYSTEM_PROMPT)
return DEFAULT_SYSTEM_PROMPT
## trust-game-llama-2-7b-chat
# app.py
def construct_input_prompt(chat_history, message, extracted_data, onPage_prompt, role_prompt):
input_prompt = f"<s>[INST] <<SYS>>\n{get_default_system_prompt(extracted_data, onPage_prompt, role_prompt)}\n<</SYS>>\n\n "
for user, assistant in chat_history:
input_prompt += f"{user} [/INST] {assistant} <s>[INST] "
input_prompt += f"{message} [/INST] "
return input_prompt
## trust-game-llama-2-7b-chat
# app.py
@spaces.GPU
def generate(
request: gr.Request, # To fetch query params
message: str,
chat_history: list[tuple[str, str]],
# input_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]: # Change return type hint to Iterator[str]
conversation = []
# Fetch query params - OLD with gradio sdk = 4.20.0 version
params = request.query_params
print('those are the query params')
print(params)
# Fetch query params - NEW with gradio sdk = 4.25.0 version
#params = {key: value for key, value in request.query_params.items()}
#print('those are the query params')
#print(params)
# Assuming params = request.query_params is the dictionary containing the query parameters
# Extract the value of the 'externalID' parameter
externalID = params.get('PROLIFIC_PID')
# Check if externalID value is None or contains a value
if externalID is not None:
print("PROLIFIC_PID:", externalID)
else:
externalID = 'no_externalID'
print("PROLIFIC_PID not found or has no value.")
# Fetch personalized data
#personalized_data = fetch_personalized_data(externalID)
all_personalized_data = fetch_personalized_data(externalID)
# Initialize onPage, playerNr, and groupNrStart variables
onPage = playerNr = groupNrStart = role = part = None
# Iterate over each dictionary in the list
if all_personalized_data:
for entry in all_personalized_data:
# Check if the externalID matches the value in externalID variable (PROLIFIC_PID from the URL parameters)
if entry['externalID'] == externalID:
playerNr = entry.get('playerNr', "no_playerNr") # Retrieve playerNr value
groupNrStart = entry.get('groupNrStart', "no_groupNrStart") # Retrieve groupNrStart value
onPage = entry.get('onPage', "no_onPage") # Retrieve onPage value
role = entry.get('role', "no_role") # Retrieve role value
part = entry.get('part', "no_part") # Retrieve part value
break # Break the loop since we found the desired entry
# Print the values of onPage, playerNr, and groupNrStart and oart
print("onPage:", onPage)
print("playerNr:", playerNr)
print("groupNrStart:", groupNrStart)
print("role:", role)
print("part:", part)
# Print the onPage value
onPage_filename, onPage_prompt = map_onPage(onPage)
print("onPage_filename:", onPage_filename)
print("onPage_prompt:", onPage_prompt)
# Print the role value
role_prompt = map_role(str(role))
print("role_prompt:", role_prompt)
extracted_data = extract_variables(all_personalized_data, part)
print(extracted_data)
# Construct the input prompt using the functions from the system_prompt_config module
input_prompt = construct_input_prompt(chat_history, message, extracted_data, onPage_prompt, role_prompt)
# Move the condition here after the assignment
if input_prompt:
conversation.append({"role": "system", "content": input_prompt})
# Convert input prompt to tensor
input_ids = tokenizer(input_prompt, return_tensors="pt").to(model.device)
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
# Set up the TextIteratorStreamer
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
# Set up the generation arguments
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
# Start the model generation thread
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Yield generated text chunks
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Fix bug that last answer is not recorded!
# Parse the outputs into a readable sentence and record them
# Filter out empty strings and join the remaining strings with spaces
readable_sentence = ' '.join(filter(lambda x: x.strip(), outputs))
# Print the readable sentence
print(readable_sentence)
# Save chat history to .csv file on HuggingFace Hub
#pd.DataFrame(conversation).to_csv(DATA_FILE, index=False)
#print("updating conversation")
#repo.push_to_hub(blocking=False, commit_message=f"Updating data at {datetime.datetime.now()}")
#print(conversation)
# Save chat history to .csv file on HuggingFace Hub
# Set the maximum column width to None to prevent truncation
pd.set_option("display.max_colwidth", None)
# Generate filename with bot id and session id
filename = f"{groupNrStart}_{playerNr}_{externalID}_{onPage_filename}_{DATA_FILENAME}"
data_file = os.path.join(DATA_DIRECTORY, filename)
# Generate timestamp
timestamp = datetime.datetime.now()
# Check if the file already exists
if os.path.exists(data_file):
# If file exists, load existing data
existing_data = pd.read_csv(data_file)
else:
# If file doesn't exist, set existing_data to None
existing_data = None
# Create a DataFrame for the current conversation turn
turn_data = {
"turn_id": len(existing_data) + 1 if existing_data is not None else 1,
"question": message,
"answer": readable_sentence,
"timestamp": timestamp,
}
turn_df = pd.DataFrame([turn_data])
# Check if existing_data is not None and concatenate the new conversation turn
if existing_data is not None:
updated_data = pd.concat([existing_data, turn_df], ignore_index=True)
else:
updated_data = turn_df
# Write the updated data to the CSV file
# updated_data.to_csv(data_file, index=False)
# Write the updated data to the CSV file with no quoting
# updated_data.to_csv(data_file, index=False, quoting=csv.QUOTE_NONE)
# Write the updated data to the CSV file with all fields quoted
updated_data.to_csv(data_file, index=False, quoting=csv.QUOTE_ALL)
print("Updating .csv")
repo.push_to_hub(blocking=False, commit_message=f"Updating data at {timestamp}")
css = """
share-button svelte-1lcyrx4 {visibility: hidden}
"""
chat_interface = gr.ChatInterface(
fn=generate,
retry_btn=None,
clear_btn=None,
undo_btn=None,
chatbot=gr.Chatbot(avatar_images=('user.png', 'bot.png'), bubble_full_width = True, elem_id = 'chatbot'),
)
with gr.Blocks(css="style.css") as demo:
#gr.Markdown(DESCRIPTION)
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()
#demo.queue(max_size=20)
demo.launch(share=True, debug=True)
|