broadfield-dev commited on
Commit
f9beded
Β·
verified Β·
1 Parent(s): 00ac956

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +165 -94
app.py CHANGED
@@ -2,16 +2,17 @@ import gradio as gr
2
  import torch
3
  import os
4
  import logging
 
 
 
5
  from datetime import datetime
6
  from huggingface_hub import HfApi
7
  from transformers import AutoConfig, AutoModel, AutoTokenizer
8
  from optimum.onnxruntime import ORTQuantizer, ORTModelForCausalLM
9
  from optimum.onnxruntime.configuration import AutoQuantizationConfig
10
- from optimum.exporters.onnx import main_export
 
11
  import torch.nn.utils.prune as prune
12
- import time
13
-
14
- # --- 1. SETUP AND CONFIGURATION ---
15
 
16
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
17
 
@@ -23,13 +24,10 @@ api = HfApi()
23
  OUTPUT_DIR = "optimized_models"
24
  os.makedirs(OUTPUT_DIR, exist_ok=True)
25
 
26
-
27
- # --- 2. AMOP CORE PIPELINE FUNCTIONS (Logic is the same) ---
28
-
29
  def stage_1_analyze_model(model_id: str):
30
  log_stream = "[STAGE 1] Analyzing model...\n"
31
  try:
32
- config = AutoConfig.from_pretrained(model_id, trust_remote_code=True)
33
  model_type = config.model_type
34
 
35
  analysis_report = f"""
@@ -39,13 +37,12 @@ def stage_1_analyze_model(model_id: str):
39
  """
40
 
41
  recommendation = ""
42
- if 'llama' in model_type or 'gpt' in model_type or 'mistral' in model_type:
43
- recommendation = "**Recommendation:** This is a large language model (LLM). For best CPU performance, a GGUF-based quantization strategy is typically state-of-the-art. This initial version of AMOP focuses on the ONNX pipeline. The recommended path is **Quantization -> ONNX Conversion**."
44
  else:
45
- recommendation = "**Recommendation:** This is an encoder model or similar. The full AMOP pipeline is recommended for a balance of size and performance: **Pruning -> Quantization -> ONNX Conversion**."
46
 
47
  log_stream += f"Analysis complete. Architecture: {model_type}.\n"
48
- ## UI/UX UPDATE ##: Return an open Accordion instead of a visible Group
49
  return log_stream, analysis_report + "\n" + recommendation, gr.Accordion(open=True)
50
  except Exception as e:
51
  error_msg = f"Failed to analyze model '{model_id}'. Error: {e}"
@@ -60,21 +57,39 @@ def stage_2_prune_model(model, prune_percentage: float):
60
  if isinstance(module, torch.nn.Linear):
61
  prune.l1_unstructured(module, name='weight', amount=prune_percentage / 100.0)
62
  prune.remove(module, 'weight')
63
- log_stream += f"Pruning complete. Note: This version exports the original model to ONNX for maximum compatibility.\n"
64
  return model, log_stream
65
 
66
- def stage_3_and_4_quantize_and_onnx(model_id: str):
67
  log_stream = "[STAGE 3 & 4] Converting to ONNX and Quantizing...\n"
68
  try:
69
  run_id = datetime.now().strftime("%Y%m%d-%H%M%S")
70
- onnx_path = os.path.join(OUTPUT_DIR, f"{model_id.replace('/', '_')}-{run_id}-onnx")
71
- main_export(model_id, output=onnx_path, task="auto", trust_remote_code=True)
 
 
72
  log_stream += f"Successfully exported base model to ONNX at: {onnx_path}\n"
73
 
74
  quantizer = ORTQuantizer.from_pretrained(onnx_path)
75
- dqconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=False)
76
- quantized_path = os.path.join(onnx_path, "quantized")
77
- quantizer.quantize(save_dir=quantized_path, quantization_config=dqconfig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  log_stream += f"Successfully quantized model to: {quantized_path}\n"
79
  return quantized_path, log_stream
80
  except Exception as e:
@@ -82,41 +97,58 @@ def stage_3_and_4_quantize_and_onnx(model_id: str):
82
  logging.error(error_msg, exc_info=True)
83
  raise RuntimeError(error_msg)
84
 
85
- def stage_5_evaluate_and_package(model_id: str, optimized_model_path: str, pipeline_log: str, options: dict):
86
- log_stream = "[STAGE 5] Evaluating and Packaging...\n"
87
  try:
88
- ort_model = ORTModelForCausalLM.from_pretrained(optimized_model_path)
89
- tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
90
- prompt = "My name is Philipp and I"
91
- inputs = tokenizer(prompt, return_tensors="pt")
92
- start_time = time.time()
93
- gen_tokens = ort_model.generate(**inputs, max_new_tokens=20)
94
- end_time = time.time()
95
- latency = (end_time - start_time) * 1000
96
- num_tokens = len(gen_tokens[0]) - inputs.input_ids.shape[1]
97
- ms_per_token = latency / num_tokens if num_tokens > 0 else float('inf')
98
- eval_report = f"- **Inference Latency:** {latency:.2f} ms\n- **Speed:** {ms_per_token:.2f} ms/token\n"
99
- log_stream += "Evaluation complete.\n"
100
  except Exception as e:
101
- eval_report = f"- **Evaluation Failed:** Could not run generation. This often happens if the base model is not a text-generation model. Error: {e}\n"
102
- log_stream += f"Warning: Evaluation failed. {e}\n"
 
 
103
 
 
 
104
  if not HF_TOKEN:
105
  return "Skipping upload: HF_TOKEN not found.", log_stream + "Skipping upload: HF_TOKEN not found."
 
106
  try:
107
- repo_name = f"{model_id.split('/')[-1]}-amop-cpu"
108
  repo_url = api.create_repo(repo_id=repo_name, exist_ok=True, token=HF_TOKEN)
109
- with open("model_card_template.md", "r", encoding="utf-8") as f: template_content = f.read()
 
 
 
 
 
 
 
 
110
  model_card_content = template_content.format(
111
  repo_name=repo_name, model_id=model_id, optimization_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
112
- eval_report=eval_report, pruning_status="Enabled" if options['prune'] else "Disabled",
113
- pruning_percent=options['prune_percent'], repo_id=repo_url.repo_id, pipeline_log=pipeline_log
 
 
114
  )
115
  readme_path = os.path.join(optimized_model_path, "README.md")
116
- with open(readme_path, "w", encoding="utf-8") as f: f.write(model_card_content)
117
- tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
118
- tokenizer.save_pretrained(optimized_model_path)
 
 
 
 
119
  api.upload_folder(folder_path=optimized_model_path, repo_id=repo_url.repo_id, repo_type="model", token=HF_TOKEN)
 
120
  final_message = f"Success! Your optimized model is available at: huggingface.co/{repo_url.repo_id}"
121
  log_stream += "Upload complete.\n"
122
  return final_message, log_stream
@@ -125,78 +157,91 @@ def stage_5_evaluate_and_package(model_id: str, optimized_model_path: str, pipel
125
  logging.error(error_msg, exc_info=True)
126
  return f"Error: {error_msg}", log_stream + error_msg
127
 
128
-
129
- # --- 3. MAIN WORKFLOW GENERATOR (HEAVILY UPDATED FOR UI/UX) ---
130
-
131
- def run_amop_pipeline(model_id: str, do_prune: bool, prune_percent: float):
132
  if not model_id:
133
  yield {log_output: "Please enter a Model ID.", final_output: gr.Label(value="Idle", label="Status")}
134
  return
135
 
136
- ## UI/UX UPDATE ##: Yield dictionaries to update multiple components at once.
137
- # This provides immediate feedback that the process has started.
138
- initial_log = "[START] AMOP Pipeline Initiated.\n"
139
  yield {
140
  run_button: gr.Button(interactive=False, value="πŸš€ Running..."),
141
  analyze_button: gr.Button(interactive=False),
142
- final_output: gr.Label(value={"label": "RUNNING", "confidences": None}, label="Status", show_label=True),
143
  log_output: initial_log
144
  }
145
 
146
  full_log = initial_log
 
147
  try:
148
- # Step 1: Load Model
149
- full_log += "Loading base model...\n"
150
- yield {final_output: gr.Label(value={"label": "Loading model (1/5)"}), log_output: full_log}
151
- model = AutoModel.from_pretrained(model_id, trust_remote_code=True)
152
- full_log += f"Successfully loaded base model '{model_id}'.\n"
153
-
154
- # Step 2: Pruning
155
- yield {final_output: gr.Label(value={"label": "Pruning model (2/5)"}), log_output: full_log}
156
- if do_prune:
157
- model, log = stage_2_prune_model(model, prune_percent)
158
- full_log += log
159
- else:
160
- full_log += "[STAGE 2] Pruning skipped by user.\n"
 
 
 
 
 
 
 
 
161
 
162
- # Step 3 & 4: ONNX Conversion
163
- yield {final_output: gr.Label(value={"label": "Converting to ONNX (3/5)"}), log_output: full_log}
164
- optimized_path, log = stage_3_and_4_quantize_and_onnx(model_id)
165
- full_log += log
 
 
 
 
 
 
 
 
166
 
167
- # Step 5: Packaging and Evaluation
168
- yield {final_output: gr.Label(value={"label": "Packaging & Uploading (4/5)"}), log_output: full_log}
169
- options = {'prune': do_prune, 'prune_percent': prune_percent}
170
- final_message, log = stage_5_evaluate_and_package(model_id, optimized_path, full_log, options)
 
171
  full_log += log
172
 
173
- # Final Step: Done
174
  yield {
175
- final_output: gr.Label(value={"label": "SUCCESS", "confidences": None}, label="Status"),
176
  log_output: full_log,
177
- ## UI/UX UPDATE ##: Add a markdown component with a clickable link for the final result.
178
- success_box: gr.Markdown(f"βœ… **Success!** Your optimized model is available here: [{model_id}-amop-cpu](https://huggingface.co/{api.whoami()['name']}/{model_id.split('/')[-1]}-amop-cpu)", visible=True),
179
- run_button: gr.Button(interactive=True, value="3. Run Optimization Pipeline", variant="primary"),
180
- analyze_button: gr.Button(interactive=True, value="1. Analyze Model")
181
  }
182
 
183
  except Exception as e:
184
  logging.error(f"AMOP Pipeline failed. Error: {e}", exc_info=True)
185
  full_log += f"\n[ERROR] Pipeline failed: {e}"
186
  yield {
187
- final_output: gr.Label(value={"label": "ERROR", "confidences": None}, label="Status"),
188
  log_output: full_log,
189
  success_box: gr.Markdown(f"❌ **An error occurred.** Check the logs for details.", visible=True),
190
- run_button: gr.Button(interactive=True, value="3. Run Optimization Pipeline", variant="primary"),
191
- analyze_button: gr.Button(interactive=True, value="1. Analyze Model")
192
  }
 
 
 
 
193
 
194
 
195
- # --- 4. GRADIO USER INTERFACE (HEAVILY UPDATED FOR UI/UX) ---
196
-
197
- with gr.Blocks() as demo:
198
  gr.Markdown("# πŸš€ AMOP: Adaptive Model Optimization Pipeline")
199
- gr.Markdown("Turn any Hugging Face Hub model into a CPU-optimized ONNX version. Follow the steps below.")
200
 
201
  if not HF_TOKEN:
202
  gr.Warning("You have not set your HF_TOKEN in the Space secrets! The final 'upload' step will be skipped. Please add a secret with the key `HF_TOKEN` and your Hugging Face write token as the value.")
@@ -206,27 +251,53 @@ with gr.Blocks() as demo:
206
  gr.Markdown("### 1. Select a Model")
207
  model_id_input = gr.Textbox(
208
  label="Hugging Face Model ID",
209
- placeholder="e.g., gpt2, bert-base-uncased",
210
- info="Enter the ID of a model from the Hub."
211
  )
212
  analyze_button = gr.Button("πŸ” Analyze Model", variant="secondary")
213
 
214
- ## UI/UX UPDATE ##: Use an Accordion. It's closed by default, keeping the UI clean.
215
  with gr.Accordion("βš™οΈ 2. Configure Optimization", open=False) as optimization_accordion:
216
  analysis_report_output = gr.Markdown()
217
- prune_checkbox = gr.Checkbox(label="Enable Pruning (Stage 2)", value=False, info="Removes redundant weights from the model.")
218
- prune_slider = gr.Slider(minimum=0, maximum=90, value=20, step=5, label="Pruning Percentage (%)")
219
- run_button = gr.Button("πŸš€ 3. Run Optimization Pipeline", variant="primary")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
220
 
221
  with gr.Column(scale=2):
222
  gr.Markdown("### Pipeline Status & Logs")
223
- ## UI/UX UPDATE ##: Use gr.Label for a clean, prominent status indicator.
224
  final_output = gr.Label(value="Idle", label="Status", show_label=True)
225
- ## UI/UX UPDATE ##: Add a dedicated box for the final success/error message.
226
  success_box = gr.Markdown(visible=False)
227
  log_output = gr.Textbox(label="Live Logs", lines=20, interactive=False, max_lines=20)
228
 
229
- # Event Handlers
 
 
 
 
 
 
 
 
 
 
 
230
  analyze_button.click(
231
  fn=stage_1_analyze_model,
232
  inputs=[model_id_input],
@@ -235,7 +306,7 @@ with gr.Blocks() as demo:
235
 
236
  run_button.click(
237
  fn=run_amop_pipeline,
238
- inputs=[model_id_input, prune_checkbox, prune_slider],
239
  outputs=[run_button, analyze_button, final_output, log_output, success_box]
240
  )
241
 
 
2
  import torch
3
  import os
4
  import logging
5
+ import time
6
+ import tempfile
7
+ import shutil
8
  from datetime import datetime
9
  from huggingface_hub import HfApi
10
  from transformers import AutoConfig, AutoModel, AutoTokenizer
11
  from optimum.onnxruntime import ORTQuantizer, ORTModelForCausalLM
12
  from optimum.onnxruntime.configuration import AutoQuantizationConfig
13
+ from optimum.exporters.onnx import main_export as onnx_export
14
+ from optimum.exporters.gguf import main_export as gguf_export
15
  import torch.nn.utils.prune as prune
 
 
 
16
 
17
  logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
18
 
 
24
  OUTPUT_DIR = "optimized_models"
25
  os.makedirs(OUTPUT_DIR, exist_ok=True)
26
 
 
 
 
27
  def stage_1_analyze_model(model_id: str):
28
  log_stream = "[STAGE 1] Analyzing model...\n"
29
  try:
30
+ config = AutoConfig.from_pretrained(model_id, trust_remote_code=True, token=HF_TOKEN)
31
  model_type = config.model_type
32
 
33
  analysis_report = f"""
 
37
  """
38
 
39
  recommendation = ""
40
+ if 'llama' in model_type or 'gpt' in model_type or 'mistral' in model_type or 'gemma' in model_type:
41
+ recommendation = "**Recommendation:** This is a Large Language Model (LLM). For the best CPU performance and community support, the **GGUF Pipeline** is highly recommended. The ONNX pipeline is a viable alternative."
42
  else:
43
+ recommendation = "**Recommendation:** This is likely an encoder model. The **ONNX Pipeline** is recommended. Pruning may offer size reduction, but its impact on performance can vary."
44
 
45
  log_stream += f"Analysis complete. Architecture: {model_type}.\n"
 
46
  return log_stream, analysis_report + "\n" + recommendation, gr.Accordion(open=True)
47
  except Exception as e:
48
  error_msg = f"Failed to analyze model '{model_id}'. Error: {e}"
 
57
  if isinstance(module, torch.nn.Linear):
58
  prune.l1_unstructured(module, name='weight', amount=prune_percentage / 100.0)
59
  prune.remove(module, 'weight')
60
+ log_stream += f"Pruning complete with {prune_percentage}% target.\n"
61
  return model, log_stream
62
 
63
+ def stage_3_4_onnx_quantize(model_path: str, calibration_data_path: str):
64
  log_stream = "[STAGE 3 & 4] Converting to ONNX and Quantizing...\n"
65
  try:
66
  run_id = datetime.now().strftime("%Y%m%d-%H%M%S")
67
+ model_name = os.path.basename(model_path)
68
+ onnx_path = os.path.join(OUTPUT_DIR, f"{model_name}-{run_id}-onnx")
69
+
70
+ onnx_export(model_path, output=onnx_path, task="auto", trust_remote_code=True)
71
  log_stream += f"Successfully exported base model to ONNX at: {onnx_path}\n"
72
 
73
  quantizer = ORTQuantizer.from_pretrained(onnx_path)
74
+
75
+ if calibration_data_path:
76
+ log_stream += "Performing STATIC quantization with user-provided calibration data.\n"
77
+ dqconfig = AutoQuantizationConfig.avx512_vnni(is_static=True, per_channel=False)
78
+ from datasets import load_dataset
79
+ calibration_dataset = quantizer.get_calibration_dataset(
80
+ "text",
81
+ dataset_args={"path": calibration_data_path, "split": "train"},
82
+ num_samples=100,
83
+ dataset_num_proc=1,
84
+ )
85
+ quantized_path = os.path.join(onnx_path, "quantized-static")
86
+ quantizer.quantize(save_dir=quantized_path, quantization_config=dqconfig, calibration_dataset=calibration_dataset)
87
+ else:
88
+ log_stream += "Performing DYNAMIC quantization.\n"
89
+ dqconfig = AutoQuantizationConfig.avx512_vnni(is_static=False, per_channel=False)
90
+ quantized_path = os.path.join(onnx_path, "quantized-dynamic")
91
+ quantizer.quantize(save_dir=quantized_path, quantization_config=dqconfig)
92
+
93
  log_stream += f"Successfully quantized model to: {quantized_path}\n"
94
  return quantized_path, log_stream
95
  except Exception as e:
 
97
  logging.error(error_msg, exc_info=True)
98
  raise RuntimeError(error_msg)
99
 
100
+ def stage_3_4_gguf_quantize(model_id: str, quantization_strategy: str):
101
+ log_stream = f"[STAGE 3 & 4] Converting to GGUF with '{quantization_strategy}' quantization...\n"
102
  try:
103
+ run_id = datetime.now().strftime("%Y%m%d-%H%M%S")
104
+ model_name = model_id.replace('/', '_')
105
+ gguf_path = os.path.join(OUTPUT_DIR, f"{model_name}-{run_id}-gguf")
106
+ os.makedirs(gguf_path, exist_ok=True)
107
+
108
+ gguf_export(model_id, output=os.path.join(gguf_path, "model.gguf"), quantization_strategy=quantization_strategy, trust_remote_code=True)
109
+
110
+ log_stream += f"Successfully exported and quantized model to GGUF at: {gguf_path}\n"
111
+ return gguf_path, log_stream
 
 
 
112
  except Exception as e:
113
+ error_msg = f"Failed during GGUF conversion. Error: {e}"
114
+ logging.error(error_msg, exc_info=True)
115
+ raise RuntimeError(error_msg)
116
+
117
 
118
+ def stage_5_package_and_upload(model_id: str, optimized_model_path: str, pipeline_log: str, options: dict):
119
+ log_stream = "[STAGE 5] Packaging and Uploading...\n"
120
  if not HF_TOKEN:
121
  return "Skipping upload: HF_TOKEN not found.", log_stream + "Skipping upload: HF_TOKEN not found."
122
+
123
  try:
124
+ repo_name = f"{model_id.split('/')[-1]}-amop-cpu-{options['pipeline_type'].lower()}"
125
  repo_url = api.create_repo(repo_id=repo_name, exist_ok=True, token=HF_TOKEN)
126
+
127
+ if options['pipeline_type'] == "GGUF":
128
+ template_file = "model_card_template_gguf.md"
129
+ else:
130
+ template_file = "model_card_template.md"
131
+
132
+ with open(template_file, "r", encoding="utf-8") as f:
133
+ template_content = f.read()
134
+
135
  model_card_content = template_content.format(
136
  repo_name=repo_name, model_id=model_id, optimization_date=datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
137
+ pruning_status="Enabled" if options.get('prune', False) else "Disabled",
138
+ pruning_percent=options.get('prune_percent', 0),
139
+ quant_type=options.get('quant_type', 'N/A'),
140
+ repo_id=repo_url.repo_id, pipeline_log=pipeline_log
141
  )
142
  readme_path = os.path.join(optimized_model_path, "README.md")
143
+ with open(readme_path, "w", encoding="utf-8") as f:
144
+ f.write(model_card_content)
145
+
146
+ if options['pipeline_type'] == "ONNX":
147
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
148
+ tokenizer.save_pretrained(optimized_model_path)
149
+
150
  api.upload_folder(folder_path=optimized_model_path, repo_id=repo_url.repo_id, repo_type="model", token=HF_TOKEN)
151
+
152
  final_message = f"Success! Your optimized model is available at: huggingface.co/{repo_url.repo_id}"
153
  log_stream += "Upload complete.\n"
154
  return final_message, log_stream
 
157
  logging.error(error_msg, exc_info=True)
158
  return f"Error: {error_msg}", log_stream + error_msg
159
 
160
+ def run_amop_pipeline(model_id: str, pipeline_type: str, do_prune: bool, prune_percent: float, onnx_quant_type: str, calibration_file, gguf_quant_type: str):
 
 
 
161
  if not model_id:
162
  yield {log_output: "Please enter a Model ID.", final_output: gr.Label(value="Idle", label="Status")}
163
  return
164
 
165
+ initial_log = f"[START] AMOP {pipeline_type} Pipeline Initiated.\n"
 
 
166
  yield {
167
  run_button: gr.Button(interactive=False, value="πŸš€ Running..."),
168
  analyze_button: gr.Button(interactive=False),
169
+ final_output: gr.Label(value={"label": f"RUNNING ({pipeline_type})"}, show_label=True),
170
  log_output: initial_log
171
  }
172
 
173
  full_log = initial_log
174
+ temp_model_dir = None
175
  try:
176
+ repo_name_suffix = f"-amop-cpu-{pipeline_type.lower()}"
177
+ repo_id_for_link = f"{api.whoami()['name']}/{model_id.split('/')[-1]}{repo_name_suffix}"
178
+
179
+ if pipeline_type == "ONNX":
180
+ full_log += "Loading base model for pruning...\n"
181
+ yield {final_output: gr.Label(value="Loading model (1/5)"), log_output: full_log}
182
+ model = AutoModel.from_pretrained(model_id, trust_remote_code=True)
183
+ tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True)
184
+ full_log += f"Successfully loaded base model '{model_id}'.\n"
185
+
186
+ yield {final_output: gr.Label(value="Pruning model (2/5)"), log_output: full_log}
187
+ if do_prune:
188
+ model, log = stage_2_prune_model(model, prune_percent)
189
+ full_log += log
190
+ else:
191
+ full_log += "[STAGE 2] Pruning skipped by user.\n"
192
+
193
+ temp_model_dir = tempfile.mkdtemp()
194
+ model.save_pretrained(temp_model_dir)
195
+ tokenizer.save_pretrained(temp_model_dir)
196
+ full_log += f"Saved intermediate model to temporary directory: {temp_model_dir}\n"
197
 
198
+ yield {final_output: gr.Label(value="Converting to ONNX (3/5)"), log_output: full_log}
199
+ calib_path = calibration_file.name if onnx_quant_type == "Static" and calibration_file else None
200
+ optimized_path, log = stage_3_4_onnx_quantize(temp_model_dir, calib_path)
201
+ full_log += log
202
+ options = {'pipeline_type': 'ONNX', 'prune': do_prune, 'prune_percent': prune_percent, 'quant_type': onnx_quant_type}
203
+
204
+ elif pipeline_type == "GGUF":
205
+ full_log += "[STAGE 1 & 2] Loading and Pruning are skipped for GGUF pipeline.\n"
206
+ yield {final_output: gr.Label(value="Converting to GGUF (3/5)"), log_output: full_log}
207
+ optimized_path, log = stage_3_4_gguf_quantize(model_id, gguf_quant_type)
208
+ full_log += log
209
+ options = {'pipeline_type': 'GGUF', 'quant_type': gguf_quant_type}
210
 
211
+ else:
212
+ raise ValueError("Invalid pipeline type selected.")
213
+
214
+ yield {final_output: gr.Label(value="Packaging & Uploading (4/5)"), log_output: full_log}
215
+ final_message, log = stage_5_package_and_upload(model_id, optimized_path, full_log, options)
216
  full_log += log
217
 
 
218
  yield {
219
+ final_output: gr.Label(value="SUCCESS", label="Status"),
220
  log_output: full_log,
221
+ success_box: gr.Markdown(f"βœ… **Success!** Your optimized model is available here: [{repo_id_for_link}](https://huggingface.co/{repo_id_for_link})", visible=True),
222
+ run_button: gr.Button(interactive=True, value="Run Optimization Pipeline", variant="primary"),
223
+ analyze_button: gr.Button(interactive=True, value="Analyze Model")
 
224
  }
225
 
226
  except Exception as e:
227
  logging.error(f"AMOP Pipeline failed. Error: {e}", exc_info=True)
228
  full_log += f"\n[ERROR] Pipeline failed: {e}"
229
  yield {
230
+ final_output: gr.Label(value="ERROR", label="Status"),
231
  log_output: full_log,
232
  success_box: gr.Markdown(f"❌ **An error occurred.** Check the logs for details.", visible=True),
233
+ run_button: gr.Button(interactive=True, value="Run Optimization Pipeline", variant="primary"),
234
+ analyze_button: gr.Button(interactive=True, value="Analyze Model")
235
  }
236
+ finally:
237
+ if temp_model_dir and os.path.exists(temp_model_dir):
238
+ shutil.rmtree(temp_model_dir)
239
+ logging.info(f"Cleaned up temporary directory: {temp_model_dir}")
240
 
241
 
242
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
 
 
243
  gr.Markdown("# πŸš€ AMOP: Adaptive Model Optimization Pipeline")
244
+ gr.Markdown("Turn any Hugging Face Hub model into a CPU-optimized version using ONNX or GGUF.")
245
 
246
  if not HF_TOKEN:
247
  gr.Warning("You have not set your HF_TOKEN in the Space secrets! The final 'upload' step will be skipped. Please add a secret with the key `HF_TOKEN` and your Hugging Face write token as the value.")
 
251
  gr.Markdown("### 1. Select a Model")
252
  model_id_input = gr.Textbox(
253
  label="Hugging Face Model ID",
254
+ placeholder="e.g., gpt2, meta-llama/Llama-2-7b-chat-hf",
 
255
  )
256
  analyze_button = gr.Button("πŸ” Analyze Model", variant="secondary")
257
 
 
258
  with gr.Accordion("βš™οΈ 2. Configure Optimization", open=False) as optimization_accordion:
259
  analysis_report_output = gr.Markdown()
260
+
261
+ pipeline_type_radio = gr.Radio(
262
+ ["ONNX", "GGUF"], label="Select Optimization Pipeline", info="GGUF is recommended for LLMs, ONNX for others."
263
+ )
264
+
265
+ with gr.Group(visible=False) as onnx_options:
266
+ gr.Markdown("#### ONNX Pipeline Options")
267
+ prune_checkbox = gr.Checkbox(label="Enable Pruning", value=False, info="Removes redundant weights. Applied before ONNX conversion.")
268
+ prune_slider = gr.Slider(minimum=0, maximum=90, value=20, step=5, label="Pruning Percentage (%)")
269
+ onnx_quant_radio = gr.Radio(["Dynamic", "Static"], label="ONNX Quantization Type", value="Dynamic", info="Static may offer better performance but requires calibration data.")
270
+ calibration_file_upload = gr.File(label="Upload Calibration Data (.txt)", visible=False, file_types=['.txt'])
271
+
272
+ with gr.Group(visible=False) as gguf_options:
273
+ gr.Markdown("#### GGUF Pipeline Options")
274
+ gguf_quant_dropdown = gr.Dropdown(
275
+ ["q4_k_m", "q5_k_m", "q8_0", "f16"],
276
+ label="GGUF Quantization Strategy",
277
+ value="q4_k_m",
278
+ info="q4_k_m is a good balance of size and quality."
279
+ )
280
+
281
+ run_button = gr.Button("πŸš€ Run Optimization Pipeline", variant="primary")
282
 
283
  with gr.Column(scale=2):
284
  gr.Markdown("### Pipeline Status & Logs")
 
285
  final_output = gr.Label(value="Idle", label="Status", show_label=True)
 
286
  success_box = gr.Markdown(visible=False)
287
  log_output = gr.Textbox(label="Live Logs", lines=20, interactive=False, max_lines=20)
288
 
289
+ def update_ui_for_pipeline(pipeline_type):
290
+ return {
291
+ onnx_options: gr.Group(visible=pipeline_type == "ONNX"),
292
+ gguf_options: gr.Group(visible=pipeline_type == "GGUF")
293
+ }
294
+
295
+ def update_ui_for_quant_type(quant_type):
296
+ return gr.File(visible=quant_type == "Static")
297
+
298
+ pipeline_type_radio.change(fn=update_ui_for_pipeline, inputs=pipeline_type_radio, outputs=[onnx_options, gguf_options])
299
+ onnx_quant_radio.change(fn=update_ui_for_quant_type, inputs=onnx_quant_radio, outputs=[calibration_file_upload])
300
+
301
  analyze_button.click(
302
  fn=stage_1_analyze_model,
303
  inputs=[model_id_input],
 
306
 
307
  run_button.click(
308
  fn=run_amop_pipeline,
309
+ inputs=[model_id_input, pipeline_type_radio, prune_checkbox, prune_slider, onnx_quant_radio, calibration_file_upload, gguf_quant_dropdown],
310
  outputs=[run_button, analyze_button, final_output, log_output, success_box]
311
  )
312