--- license: mit tags: - amop-optimized - gguf --- # AMOP-Optimized GGUF Model: {repo_name} This model was automatically optimized for CPU inference using the **Adaptive Model Optimization Pipeline (AMOP)**. - **Base Model:** [{model_id}](https://huggingface.co/{model_id}) - **Optimization Date:** {optimization_date} ## Optimization Details The following AMOP GGUF pipeline stages were applied: - **GGUF Conversion & Quantization:** Enabled (Strategy: {quant_type}) ## How to Use This model is in GGUF format and can be run with libraries like `llama-cpp-python`. First, install the necessary libraries: ```bash pip install llama-cpp-python ``` Then, use the following Python code to run inference: ```python from llama_cpp import Llama from huggingface_hub import hf_hub_download # Download the GGUF model from the Hub model_path = hf_hub_download( repo_id="{repo_id}", filename="model.gguf" # Or the specific GGUF file name ) # Instantiate the model llm = Llama( model_path=model_path, n_ctx=2048, # Context window ) # Run inference prompt = "The future of AI is" output = llm( f"Q: {prompt} A: ", # Or your preferred prompt format max_tokens=50, stop=["Q:", "\n"], echo=True ) print(output) ``` ## AMOP Pipeline Log
Click to expand ``` {pipeline_log} ```