Spaces:
Running
Running
File size: 12,220 Bytes
1c7cefc 4624af3 5b77884 a9254a4 4624af3 5b77884 dd9bc64 4624af3 dd9bc64 4624af3 1c7cefc e9d9741 5b77884 a9254a4 e9d9741 679afad e9d9741 679afad 5b77884 e9d9741 4624af3 679afad 4624af3 5b77884 4624af3 5b77884 4624af3 a9254a4 5b77884 e9d9741 5b77884 679afad db59543 679afad 1252efa 679afad e9d9741 db59543 e9d9741 db59543 e9d9741 db59543 e9d9741 db59543 e9d9741 db59543 e9d9741 5b77884 db59543 679afad e9d9741 5b77884 1252efa 5b77884 1252efa 5b77884 1252efa 5b77884 1252efa 5b77884 1252efa 5b77884 1252efa 5b77884 1252efa 5b77884 5d623dd 048ecc9 5d623dd 1252efa 5b77884 1252efa 5b77884 5d623dd 5b77884 1252efa 5b77884 1252efa 5b77884 679afad 4624af3 679afad 4624af3 679afad 4624af3 1c7cefc 679afad 5b77884 679afad 4624af3 679afad 4624af3 679afad 4624af3 1252efa 5b77884 679afad 4624af3 679afad 4624af3 679afad 4624af3 5b77884 1c7cefc 5b77884 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
import os
import threading
import hashlib
import logging
import time
from datetime import datetime
from flask import Flask, render_template, request, jsonify
from rss_processor import fetch_rss_feeds, process_and_store_articles, download_from_hf_hub, upload_to_hf_hub, LOCAL_DB_DIR, main
from langchain.vectorstores import Chroma
from langchain.embeddings import HuggingFaceEmbeddings
main()
app = Flask(__name__)
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
loading_complete = True
last_update_time = time.time()
last_data_hash = None
def get_embedding_model():
if not hasattr(get_embedding_model, "model"):
get_embedding_model.model = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
return get_embedding_model.model
def get_vector_db():
if not os.path.exists(LOCAL_DB_DIR):
return None
try:
if not hasattr(get_vector_db, "db_instance"):
get_vector_db.db_instance = Chroma(
persist_directory=LOCAL_DB_DIR,
embedding_function=get_embedding_model(),
collection_name="news_articles"
)
return get_vector_db.db_instance
except Exception as e:
logger.error(f"Failed to load vector DB: {e}")
if hasattr(get_vector_db, "db_instance"):
delattr(get_vector_db, "db_instance")
return None
def load_feeds_in_background():
global loading_complete, last_update_time
if not loading_complete:
return
loading_complete = False
try:
logger.info("Starting background RSS feed fetch")
articles = fetch_rss_feeds()
logger.info(f"Fetched {len(articles)} articles")
process_and_store_articles(articles)
last_update_time = time.time()
logger.info("Background feed processing complete")
upload_to_hf_hub()
except Exception as e:
logger.error(f"Error in background feed loading: {e}")
finally:
loading_complete = True
def get_all_docs_from_db():
vector_db = get_vector_db()
if not vector_db or vector_db._collection.count() == 0:
return {'documents': [], 'metadatas': []}
return vector_db.get(include=['documents', 'metadatas'])
def format_articles_from_db_results(docs):
enriched_articles = []
seen_keys = set()
items = []
# Handle both direct DB gets and similarity search results
if isinstance(docs, dict) and 'metadatas' in docs:
items = zip(docs.get('documents', []), docs.get('metadatas', []))
elif isinstance(docs, list):
items = [(doc.page_content, doc.metadata) for doc, score in docs]
for doc_content, meta in items:
if not meta: continue
title = meta.get("title", "No Title")
link = meta.get("link", "")
# The 'published' string from the DB is already in the correct ISO format.
published_iso = meta.get("published", "1970-01-01T00:00:00").strip()
# Use a unique key to avoid duplicates in the final display
key = f"{title}|{link}|{published_iso}"
if key not in seen_keys:
seen_keys.add(key)
# The description is the main content of the document, not in the metadata.
description = doc_content if doc_content else "No Description"
enriched_articles.append({
"title": title,
"link": link,
"description": description, # Correctly use the document content
"category": meta.get("category", "Uncategorized"),
"published": published_iso, # Use the ISO string directly
"image": meta.get("image", "svg"),
})
# Sorting will now work correctly with valid ISO date strings
enriched_articles.sort(key=lambda x: x["published"], reverse=True)
return enriched_articles
def compute_data_hash(categorized_articles):
if not categorized_articles: return ""
data_str = ""
for cat, articles in sorted(categorized_articles.items()):
for article in sorted(articles, key=lambda x: x["published"]):
data_str += f"{cat}|{article['title']}|{article['link']}|{article['published']}|"
return hashlib.sha256(data_str.encode('utf-8')).hexdigest()
@app.route('/')
def index():
global loading_complete, last_update_time, last_data_hash
if not os.path.exists(LOCAL_DB_DIR):
logger.info(f"No Chroma DB found at '{LOCAL_DB_DIR}', downloading from Hugging Face Hub...")
download_from_hf_hub()
threading.Thread(target=load_feeds_in_background, daemon=True).start()
try:
all_docs = get_all_docs_from_db()
if not all_docs['metadatas']:
return render_template("index.html", categorized_articles={}, has_articles=False, loading=True)
enriched_articles = format_articles_from_db_results(all_docs)
categorized_articles = {}
for article in enriched_articles:
cat = article["category"]
categorized_articles.setdefault(cat, []).append(article)
categorized_articles = dict(sorted(categorized_articles.items()))
for cat in categorized_articles:
categorized_articles[cat] = categorized_articles[cat][:10]
last_data_hash = compute_data_hash(categorized_articles)
return render_template("index.html", categorized_articles=categorized_articles, has_articles=True, loading=not loading_complete)
except Exception as e:
logger.error(f"Error retrieving articles at startup: {e}", exc_info=True)
return render_template("index.html", categorized_articles={}, has_articles=False, loading=True)
@app.route('/search', methods=['POST'])
def search():
query = request.form.get('search')
if not query:
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False})
vector_db = get_vector_db()
if not vector_db:
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False})
try:
# 1. Use similarity_search_with_score to get the raw distance score.
# This returns a list of (Document, float) tuples.
results_with_scores = vector_db.similarity_search_with_score(query, k=50)
# 2. Filter based on the raw L2 distance score. Lower is better.
# A threshold of 1.0 is a good starting point. You can make it smaller (e.g., 0.8)
# for stricter matches, or larger for looser matches.
score_threshold = 1.5
filtered_results = [(doc, score) for doc, score in results_with_scores if score < score_threshold]
# 3. Pass the correctly filtered list to the formatting function.
# This function is already set up to handle this data structure.
enriched_articles = format_articles_from_db_results(filtered_results)
categorized_articles = {}
for article in enriched_articles:
cat = article["category"]
categorized_articles.setdefault(cat, []).append(article)
return jsonify({
"categorized_articles": categorized_articles,
"has_articles": bool(enriched_articles),
"loading": False
})
except Exception as e:
logger.error(f"Semantic search error: {e}", exc_info=True)
return jsonify({"categorized_articles": {}, "has_articles": False, "loading": False}), 500
@app.route('/get_all_articles/<category>')
def get_all_articles(category):
try:
all_docs = get_all_docs_from_db()
enriched_articles = format_articles_from_db_results(all_docs)
category_articles = [article for article in enriched_articles if article["category"] == category]
return jsonify({"articles": category_articles, "category": category})
except Exception as e:
logger.error(f"Error fetching all articles for category {category}: {e}")
return jsonify({"articles": [], "category": category}), 500
@app.route('/check_loading')
def check_loading():
return jsonify({"status": "complete" if loading_complete else "loading", "last_update": last_update_time})
@app.route('/get_updates')
def get_updates():
global last_update_time, last_data_hash
try:
all_docs = get_all_docs_from_db()
if not all_docs['metadatas']:
return jsonify({"articles": {}, "last_update": last_update_time, "has_updates": False})
enriched_articles = format_articles_from_db_results(all_docs)
categorized_articles = {}
for article in enriched_articles:
cat = article["category"]
categorized_articles.setdefault(cat, []).append(article)
for cat in categorized_articles:
categorized_articles[cat] = categorized_articles[cat][:10]
current_data_hash = compute_data_hash(categorized_articles)
has_updates = last_data_hash != current_data_hash
if has_updates:
last_data_hash = current_data_hash
return jsonify({"articles": categorized_articles, "last_update": last_update_time, "has_updates": True})
else:
return jsonify({"articles": {}, "last_update": last_update_time, "has_updates": False})
except Exception as e:
logger.error(f"Error fetching updates: {e}")
return jsonify({"articles": {}, "last_update": last_update_time, "has_updates": False}), 500
@app.route('/card')
def card_load():
return render_template("card.html")
@app.route('/api/v1/search', methods=['GET'])
def api_search():
query = request.args.get('q')
limit = request.args.get('limit', default=20, type=int)
if not query:
return jsonify({"error": "Query parameter 'q' is required."}), 400
vector_db = get_vector_db()
if not vector_db:
return jsonify({"error": "Database not available."}), 503
try:
results = vector_db.similarity_search_with_relevance_scores(query, k=limit)
formatted_articles = format_articles_from_db_results(results)
return jsonify(formatted_articles)
except Exception as e:
logger.error(f"API Search error: {e}", exc_info=True)
return jsonify({"error": "An internal error occurred during search."}), 500
@app.route('/api/v1/articles/category/<string:category_name>', methods=['GET'])
def api_get_articles_by_category(category_name):
limit = request.args.get('limit', default=20, type=int)
offset = request.args.get('offset', default=0, type=int)
vector_db = get_vector_db()
if not vector_db:
return jsonify({"error": "Database not available."}), 503
try:
results = vector_db.get(where={"category": category_name}, include=['documents', 'metadatas'])
formatted_articles = format_articles_from_db_results(results)
paginated_results = formatted_articles[offset : offset + limit]
return jsonify({
"category": category_name,
"total_articles": len(formatted_articles),
"articles": paginated_results
})
except Exception as e:
logger.error(f"API Category fetch error: {e}", exc_info=True)
return jsonify({"error": "An internal error occurred."}), 500
@app.route('/api/v1/categories', methods=['GET'])
def api_get_categories():
vector_db = get_vector_db()
if not vector_db:
return jsonify({"error": "Database not available."}), 503
try:
all_metadata = vector_db.get(include=['metadatas'])['metadatas']
if not all_metadata:
return jsonify([])
unique_categories = sorted(list({meta['category'] for meta in all_metadata if 'category' in meta}))
return jsonify(unique_categories)
except Exception as e:
logger.error(f"API Categories fetch error: {e}", exc_info=True)
return jsonify({"error": "An internal error occurred."}), 500
@app.route('/api/v1/status', methods=['GET'])
def api_get_status():
return jsonify({
"status": "complete" if loading_complete else "loading",
"last_update_time": last_update_time
})
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860) |