Upload 2 files
Browse files- app.py +312 -240
- requirements.txt +1 -1
app.py
CHANGED
|
@@ -27,7 +27,7 @@ from CLIP_Explainability.vit_cam import (
|
|
| 27 |
|
| 28 |
from pytorch_grad_cam.grad_cam import GradCAM
|
| 29 |
|
| 30 |
-
RUN_LITE =
|
| 31 |
|
| 32 |
MAX_IMG_WIDTH = 500
|
| 33 |
MAX_IMG_HEIGHT = 800
|
|
@@ -58,7 +58,10 @@ def encode_search_query(search_query, model_type):
|
|
| 58 |
text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
|
| 59 |
elif model_type == "J-CLIP (日本語 ViT)":
|
| 60 |
t_text = st.session_state.ja_tokenizer(
|
| 61 |
-
search_query,
|
|
|
|
|
|
|
|
|
|
| 62 |
)
|
| 63 |
text_encoded = st.session_state.ja_model.get_text_features(**t_text)
|
| 64 |
text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
|
|
@@ -67,7 +70,7 @@ def encode_search_query(search_query, model_type):
|
|
| 67 |
text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
|
| 68 |
|
| 69 |
# Retrieve the feature vector
|
| 70 |
-
return text_encoded
|
| 71 |
|
| 72 |
|
| 73 |
def clip_search(search_query):
|
|
@@ -153,7 +156,9 @@ def load_image_features():
|
|
| 153 |
def init():
|
| 154 |
st.session_state.current_page = 1
|
| 155 |
|
| 156 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
| 157 |
st.session_state.device = device
|
| 158 |
|
| 159 |
# Load the open CLIP models
|
|
@@ -168,7 +173,7 @@ def init():
|
|
| 168 |
|
| 169 |
st.session_state.ml_model = (
|
| 170 |
pt_multilingual_clip.MultilingualCLIP.from_pretrained(ml_model_name)
|
| 171 |
-
)
|
| 172 |
st.session_state.ml_tokenizer = AutoTokenizer.from_pretrained(ml_model_name)
|
| 173 |
|
| 174 |
ja_model_name = "hakuhodo-tech/japanese-clip-vit-h-14-bert-wider"
|
|
@@ -193,7 +198,7 @@ def init():
|
|
| 193 |
|
| 194 |
st.session_state.rn_model = legacy_multilingual_clip.load_model(
|
| 195 |
"M-BERT-Base-69"
|
| 196 |
-
)
|
| 197 |
st.session_state.rn_tokenizer = BertTokenizer.from_pretrained(
|
| 198 |
"bert-base-multilingual-cased"
|
| 199 |
)
|
|
@@ -210,7 +215,6 @@ def init():
|
|
| 210 |
st.session_state.vision_mode = "tiled"
|
| 211 |
st.session_state.search_image_ids = []
|
| 212 |
st.session_state.search_image_scores = {}
|
| 213 |
-
st.session_state.activations_image = None
|
| 214 |
st.session_state.text_table_df = None
|
| 215 |
|
| 216 |
with st.spinner("Loading models and data, please wait..."):
|
|
@@ -221,233 +225,271 @@ if "images_info" not in st.session_state:
|
|
| 221 |
init()
|
| 222 |
|
| 223 |
|
| 224 |
-
def
|
| 225 |
-
|
| 226 |
-
return
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
st.title("Image + query details")
|
| 231 |
-
with header_cols[1]:
|
| 232 |
-
if st.button("Close"):
|
| 233 |
-
st.rerun()
|
| 234 |
|
| 235 |
-
st.
|
| 236 |
-
|
| 237 |
-
)
|
| 238 |
|
| 239 |
-
|
| 240 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
|
|
|
| 246 |
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
if st.session_state.vision_mode == "tiled":
|
| 259 |
-
scaled_dims = [img_dim, img_dim]
|
| 260 |
-
|
| 261 |
-
if orig_img_dims[0] > orig_img_dims[1]:
|
| 262 |
-
scale_ratio = round(orig_img_dims[0] / orig_img_dims[1])
|
| 263 |
-
if scale_ratio > 1:
|
| 264 |
-
scaled_dims = [scale_ratio * img_dim, img_dim]
|
| 265 |
-
tile_behavior = "width"
|
| 266 |
-
elif orig_img_dims[0] < orig_img_dims[1]:
|
| 267 |
-
scale_ratio = round(orig_img_dims[1] / orig_img_dims[0])
|
| 268 |
-
if scale_ratio > 1:
|
| 269 |
-
scaled_dims = [img_dim, scale_ratio * img_dim]
|
| 270 |
-
tile_behavior = "height"
|
| 271 |
-
|
| 272 |
-
resized_image = image.resize(scaled_dims, Image.LANCZOS)
|
| 273 |
-
|
| 274 |
-
if tile_behavior == "width":
|
| 275 |
-
image_tiles = []
|
| 276 |
-
for x in range(0, scale_ratio):
|
| 277 |
-
box = (x * img_dim, 0, (x + 1) * img_dim, img_dim)
|
| 278 |
-
image_tiles.append(resized_image.crop(box))
|
| 279 |
-
|
| 280 |
-
elif tile_behavior == "height":
|
| 281 |
-
image_tiles = []
|
| 282 |
-
for y in range(0, scale_ratio):
|
| 283 |
-
box = (0, y * img_dim, img_dim, (y + 1) * img_dim)
|
| 284 |
-
image_tiles.append(resized_image.crop(box))
|
| 285 |
-
|
| 286 |
-
else:
|
| 287 |
-
image_tiles = [resized_image]
|
| 288 |
-
|
| 289 |
-
elif st.session_state.vision_mode == "stretched":
|
| 290 |
-
image_tiles = [image.resize((img_dim, img_dim), Image.LANCZOS)]
|
| 291 |
-
|
| 292 |
-
else: # vision_mode == "cropped"
|
| 293 |
-
if orig_img_dims[0] > orig_img_dims[1]:
|
| 294 |
-
scale_factor = orig_img_dims[0] / orig_img_dims[1]
|
| 295 |
-
resized_img_dims = (round(scale_factor * img_dim), img_dim)
|
| 296 |
-
resized_img = image.resize(resized_img_dims)
|
| 297 |
-
elif orig_img_dims[0] < orig_img_dims[1]:
|
| 298 |
-
scale_factor = orig_img_dims[1] / orig_img_dims[0]
|
| 299 |
-
resized_img_dims = (img_dim, round(scale_factor * img_dim))
|
| 300 |
-
else:
|
| 301 |
-
resized_img_dims = (img_dim, img_dim)
|
| 302 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
resized_img = image.resize(resized_img_dims)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 304 |
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
x_right = round(resized_img_dims[0] - img_dim) - left
|
| 308 |
-
x_bottom = round(resized_img_dims[1] - img_dim) - top
|
| 309 |
-
right = resized_img_dims[0] - x_right
|
| 310 |
-
bottom = resized_img_dims[1] - x_bottom
|
| 311 |
|
| 312 |
-
|
| 313 |
-
|
|
|
|
| 314 |
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
|
|
|
| 321 |
)
|
| 322 |
|
| 323 |
-
|
| 324 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 325 |
)
|
| 326 |
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
st.session_state.
|
| 350 |
)
|
| 351 |
|
| 352 |
-
|
| 353 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 354 |
)
|
| 355 |
-
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
| 372 |
-
)
|
| 373 |
-
|
| 374 |
-
image_visualizations.append(vis_t)
|
| 375 |
-
|
| 376 |
-
else: # st.session_state.active_model == Legacy
|
| 377 |
-
# Sometimes used for token importance viz
|
| 378 |
-
tokenized_text = st.session_state.rn_tokenizer.tokenize(
|
| 379 |
-
st.session_state.search_field_value
|
| 380 |
)
|
| 381 |
|
| 382 |
-
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
)
|
| 385 |
|
| 386 |
-
|
|
|
|
| 387 |
|
| 388 |
-
|
| 389 |
-
|
| 390 |
-
|
| 391 |
-
.unsqueeze(0)
|
| 392 |
-
.to(st.session_state.device)
|
| 393 |
-
)
|
| 394 |
|
| 395 |
-
|
| 396 |
-
p_image.type(st.session_state.rn_image_model.dtype),
|
| 397 |
-
text_features,
|
| 398 |
-
image_model.visual,
|
| 399 |
-
GradCAM,
|
| 400 |
-
st.session_state.device,
|
| 401 |
-
img_dim=img_dim,
|
| 402 |
-
)
|
| 403 |
|
| 404 |
-
|
|
|
|
|
|
|
| 405 |
|
| 406 |
-
|
| 407 |
|
| 408 |
-
|
| 409 |
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
| 418 |
-
|
| 419 |
-
|
| 420 |
|
| 421 |
-
|
| 422 |
-
|
| 423 |
-
|
| 424 |
-
|
| 425 |
-
|
| 426 |
|
| 427 |
-
|
| 428 |
-
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
|
| 433 |
-
|
| 434 |
-
|
| 435 |
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
|
| 439 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 440 |
)
|
| 441 |
|
| 442 |
-
|
| 443 |
-
|
| 444 |
-
|
| 445 |
-
|
|
|
|
| 446 |
)
|
| 447 |
|
| 448 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 449 |
tokenized_text = [
|
| 450 |
-
tok
|
|
|
|
|
|
|
|
|
|
| 451 |
]
|
| 452 |
|
| 453 |
if (
|
|
@@ -457,8 +499,7 @@ def visualize_gradcam(viz_image_id):
|
|
| 457 |
"Calculate text importance (may take some time)",
|
| 458 |
)
|
| 459 |
):
|
| 460 |
-
|
| 461 |
-
token_scores = []
|
| 462 |
|
| 463 |
progress_text = f"Processing {len(tokenized_text)} text tokens"
|
| 464 |
progress_bar = st.progress(0.0, text=progress_text)
|
|
@@ -466,34 +507,37 @@ def visualize_gradcam(viz_image_id):
|
|
| 466 |
for t, tok in enumerate(tokenized_text):
|
| 467 |
token = tok
|
| 468 |
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
| 481 |
-
|
| 482 |
-
|
| 483 |
-
|
| 484 |
-
|
| 485 |
-
|
| 486 |
-
|
| 487 |
-
|
| 488 |
-
|
| 489 |
-
|
| 490 |
-
|
| 491 |
-
|
| 492 |
-
|
| 493 |
-
|
| 494 |
-
|
| 495 |
-
|
| 496 |
-
|
|
|
|
|
|
|
|
|
|
| 497 |
|
| 498 |
progress_bar.progress(
|
| 499 |
(t + 1) / len(tokenized_text),
|
|
@@ -501,24 +545,48 @@ def visualize_gradcam(viz_image_id):
|
|
| 501 |
)
|
| 502 |
progress_bar.empty()
|
| 503 |
|
| 504 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 505 |
|
| 506 |
token_scores = [f"{round(score.item() * 100, 3)}%" for score in normed_scores]
|
| 507 |
st.session_state.text_table_df = pd.DataFrame(
|
| 508 |
-
{"token":
|
| 509 |
)
|
| 510 |
|
| 511 |
st.markdown("**Importance of each text token to relevance score**")
|
| 512 |
st.table(st.session_state.text_table_df)
|
| 513 |
|
| 514 |
|
| 515 |
-
|
| 516 |
-
|
|
|
|
| 517 |
|
| 518 |
|
| 519 |
-
|
| 520 |
-
|
| 521 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 522 |
|
| 523 |
|
| 524 |
st.title("Explore Japanese visual aesthetics with CLIP models")
|
|
@@ -637,7 +705,7 @@ else:
|
|
| 637 |
use_container_width=True,
|
| 638 |
)
|
| 639 |
|
| 640 |
-
controls = st.columns([
|
| 641 |
with controls[0]:
|
| 642 |
im_per_pg = st.columns([30, 70], vertical_alignment="center")
|
| 643 |
with im_per_pg[0]:
|
|
@@ -647,8 +715,6 @@ with controls[0]:
|
|
| 647 |
"Images/page:", range(10, 50, 10), label_visibility="collapsed"
|
| 648 |
)
|
| 649 |
with controls[1]:
|
| 650 |
-
st.empty()
|
| 651 |
-
with controls[2]:
|
| 652 |
im_per_row = st.columns([30, 70], vertical_alignment="center")
|
| 653 |
with im_per_row[0]:
|
| 654 |
st.markdown("**Images/row:**")
|
|
@@ -657,9 +723,7 @@ with controls[2]:
|
|
| 657 |
"Images/row:", range(1, 6), value=5, label_visibility="collapsed"
|
| 658 |
)
|
| 659 |
num_batches = ceil(len(st.session_state.image_ids) / batch_size)
|
| 660 |
-
with controls[
|
| 661 |
-
st.empty()
|
| 662 |
-
with controls[4]:
|
| 663 |
pager = st.columns([40, 60], vertical_alignment="center")
|
| 664 |
with pager[0]:
|
| 665 |
st.markdown(f"Page **{st.session_state.current_page}** of **{num_batches}** ")
|
|
@@ -672,6 +736,14 @@ with controls[4]:
|
|
| 672 |
label_visibility="collapsed",
|
| 673 |
key="current_page",
|
| 674 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 675 |
|
| 676 |
|
| 677 |
if len(st.session_state.search_image_ids) == 0:
|
|
@@ -708,7 +780,7 @@ for image_id in batch:
|
|
| 708 |
if not RUN_LITE or st.session_state.active_model == "M-CLIP (multilingual ViT)":
|
| 709 |
st.button(
|
| 710 |
"Explain this",
|
| 711 |
-
on_click=
|
| 712 |
args=[image_id],
|
| 713 |
use_container_width=True,
|
| 714 |
key=image_id,
|
|
|
|
| 27 |
|
| 28 |
from pytorch_grad_cam.grad_cam import GradCAM
|
| 29 |
|
| 30 |
+
RUN_LITE = True # Load vision model for CAM viz explainability for M-CLIP only
|
| 31 |
|
| 32 |
MAX_IMG_WIDTH = 500
|
| 33 |
MAX_IMG_HEIGHT = 800
|
|
|
|
| 58 |
text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
|
| 59 |
elif model_type == "J-CLIP (日本語 ViT)":
|
| 60 |
t_text = st.session_state.ja_tokenizer(
|
| 61 |
+
search_query,
|
| 62 |
+
padding=True,
|
| 63 |
+
return_tensors="pt",
|
| 64 |
+
device=st.session_state.device,
|
| 65 |
)
|
| 66 |
text_encoded = st.session_state.ja_model.get_text_features(**t_text)
|
| 67 |
text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
|
|
|
|
| 70 |
text_encoded /= text_encoded.norm(dim=-1, keepdim=True)
|
| 71 |
|
| 72 |
# Retrieve the feature vector
|
| 73 |
+
return text_encoded.to(st.session_state.device)
|
| 74 |
|
| 75 |
|
| 76 |
def clip_search(search_query):
|
|
|
|
| 156 |
def init():
|
| 157 |
st.session_state.current_page = 1
|
| 158 |
|
| 159 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 160 |
+
device = "cpu"
|
| 161 |
+
|
| 162 |
st.session_state.device = device
|
| 163 |
|
| 164 |
# Load the open CLIP models
|
|
|
|
| 173 |
|
| 174 |
st.session_state.ml_model = (
|
| 175 |
pt_multilingual_clip.MultilingualCLIP.from_pretrained(ml_model_name)
|
| 176 |
+
).to(device)
|
| 177 |
st.session_state.ml_tokenizer = AutoTokenizer.from_pretrained(ml_model_name)
|
| 178 |
|
| 179 |
ja_model_name = "hakuhodo-tech/japanese-clip-vit-h-14-bert-wider"
|
|
|
|
| 198 |
|
| 199 |
st.session_state.rn_model = legacy_multilingual_clip.load_model(
|
| 200 |
"M-BERT-Base-69"
|
| 201 |
+
).to(device)
|
| 202 |
st.session_state.rn_tokenizer = BertTokenizer.from_pretrained(
|
| 203 |
"bert-base-multilingual-cased"
|
| 204 |
)
|
|
|
|
| 215 |
st.session_state.vision_mode = "tiled"
|
| 216 |
st.session_state.search_image_ids = []
|
| 217 |
st.session_state.search_image_scores = {}
|
|
|
|
| 218 |
st.session_state.text_table_df = None
|
| 219 |
|
| 220 |
with st.spinner("Loading models and data, please wait..."):
|
|
|
|
| 225 |
init()
|
| 226 |
|
| 227 |
|
| 228 |
+
def get_overlay_vis(image, img_dim, image_model):
|
| 229 |
+
orig_img_dims = image.size
|
|
|
|
| 230 |
|
| 231 |
+
##### If the features are based on tiled image slices
|
| 232 |
+
tile_behavior = None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 233 |
|
| 234 |
+
if st.session_state.vision_mode == "tiled":
|
| 235 |
+
scaled_dims = [img_dim, img_dim]
|
|
|
|
| 236 |
|
| 237 |
+
if orig_img_dims[0] > orig_img_dims[1]:
|
| 238 |
+
scale_ratio = round(orig_img_dims[0] / orig_img_dims[1])
|
| 239 |
+
if scale_ratio > 1:
|
| 240 |
+
scaled_dims = [scale_ratio * img_dim, img_dim]
|
| 241 |
+
tile_behavior = "width"
|
| 242 |
+
elif orig_img_dims[0] < orig_img_dims[1]:
|
| 243 |
+
scale_ratio = round(orig_img_dims[1] / orig_img_dims[0])
|
| 244 |
+
if scale_ratio > 1:
|
| 245 |
+
scaled_dims = [img_dim, scale_ratio * img_dim]
|
| 246 |
+
tile_behavior = "height"
|
| 247 |
+
|
| 248 |
+
resized_image = image.resize(scaled_dims, Image.LANCZOS)
|
| 249 |
|
| 250 |
+
if tile_behavior == "width":
|
| 251 |
+
image_tiles = []
|
| 252 |
+
for x in range(0, scale_ratio):
|
| 253 |
+
box = (x * img_dim, 0, (x + 1) * img_dim, img_dim)
|
| 254 |
+
image_tiles.append(resized_image.crop(box))
|
| 255 |
|
| 256 |
+
elif tile_behavior == "height":
|
| 257 |
+
image_tiles = []
|
| 258 |
+
for y in range(0, scale_ratio):
|
| 259 |
+
box = (0, y * img_dim, img_dim, (y + 1) * img_dim)
|
| 260 |
+
image_tiles.append(resized_image.crop(box))
|
| 261 |
+
|
| 262 |
+
else:
|
| 263 |
+
image_tiles = [resized_image]
|
| 264 |
+
|
| 265 |
+
elif st.session_state.vision_mode == "stretched":
|
| 266 |
+
image_tiles = [image.resize((img_dim, img_dim), Image.LANCZOS)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 267 |
|
| 268 |
+
else: # vision_mode == "cropped"
|
| 269 |
+
if orig_img_dims[0] > orig_img_dims[1]:
|
| 270 |
+
scale_factor = orig_img_dims[0] / orig_img_dims[1]
|
| 271 |
+
resized_img_dims = (round(scale_factor * img_dim), img_dim)
|
| 272 |
resized_img = image.resize(resized_img_dims)
|
| 273 |
+
elif orig_img_dims[0] < orig_img_dims[1]:
|
| 274 |
+
scale_factor = orig_img_dims[1] / orig_img_dims[0]
|
| 275 |
+
resized_img_dims = (img_dim, round(scale_factor * img_dim))
|
| 276 |
+
else:
|
| 277 |
+
resized_img_dims = (img_dim, img_dim)
|
| 278 |
+
|
| 279 |
+
resized_img = image.resize(resized_img_dims)
|
| 280 |
+
|
| 281 |
+
left = round((resized_img_dims[0] - img_dim) / 2)
|
| 282 |
+
top = round((resized_img_dims[1] - img_dim) / 2)
|
| 283 |
+
x_right = round(resized_img_dims[0] - img_dim) - left
|
| 284 |
+
x_bottom = round(resized_img_dims[1] - img_dim) - top
|
| 285 |
+
right = resized_img_dims[0] - x_right
|
| 286 |
+
bottom = resized_img_dims[1] - x_bottom
|
| 287 |
|
| 288 |
+
# Crop the center of the image
|
| 289 |
+
image_tiles = [resized_img.crop((left, top, right, bottom))]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
+
image_visualizations = []
|
| 292 |
+
image_features = []
|
| 293 |
+
image_similarities = []
|
| 294 |
|
| 295 |
+
if st.session_state.active_model == "M-CLIP (multilingual ViT)":
|
| 296 |
+
text_features = st.session_state.ml_model.forward(
|
| 297 |
+
st.session_state.search_field_value, st.session_state.ml_tokenizer
|
| 298 |
+
)
|
| 299 |
+
|
| 300 |
+
if st.session_state.device == "cpu":
|
| 301 |
+
text_features = text_features.float().to(st.session_state.device)
|
| 302 |
+
else:
|
| 303 |
+
text_features = text_features.to(st.session_state.device)
|
| 304 |
|
| 305 |
+
for altered_image in image_tiles:
|
| 306 |
+
p_image = (
|
| 307 |
+
st.session_state.ml_image_preprocess(altered_image)
|
| 308 |
+
.unsqueeze(0)
|
| 309 |
+
.to(st.session_state.device)
|
| 310 |
)
|
| 311 |
|
| 312 |
+
vis_t, img_feats, similarity = interpret_vit_overlapped(
|
| 313 |
+
p_image.type(image_model.dtype),
|
| 314 |
+
text_features.type(image_model.dtype),
|
| 315 |
+
image_model.visual,
|
| 316 |
+
st.session_state.device,
|
| 317 |
+
img_dim=img_dim,
|
| 318 |
)
|
| 319 |
|
| 320 |
+
image_visualizations.append(vis_t)
|
| 321 |
+
image_features.append(img_feats)
|
| 322 |
+
image_similarities.append(similarity.item())
|
| 323 |
+
|
| 324 |
+
elif st.session_state.active_model == "J-CLIP (日本語 ViT)":
|
| 325 |
+
t_text = st.session_state.ja_tokenizer(
|
| 326 |
+
st.session_state.search_field_value,
|
| 327 |
+
return_tensors="pt",
|
| 328 |
+
device=st.session_state.device,
|
| 329 |
+
)
|
| 330 |
+
|
| 331 |
+
text_features = st.session_state.ja_model.get_text_features(**t_text)
|
| 332 |
+
|
| 333 |
+
if st.session_state.device == "cpu":
|
| 334 |
+
text_features = text_features.float().to(st.session_state.device)
|
| 335 |
+
else:
|
| 336 |
+
text_features = text_features.to(st.session_state.device)
|
| 337 |
+
|
| 338 |
+
for altered_image in image_tiles:
|
| 339 |
+
p_image = (
|
| 340 |
+
st.session_state.ja_image_preprocess(altered_image)
|
| 341 |
+
.unsqueeze(0)
|
| 342 |
+
.to(st.session_state.device)
|
| 343 |
)
|
| 344 |
|
| 345 |
+
vis_t, img_feats, similarity = interpret_vit_overlapped(
|
| 346 |
+
p_image.type(image_model.dtype),
|
| 347 |
+
text_features.type(image_model.dtype),
|
| 348 |
+
image_model.visual,
|
| 349 |
+
st.session_state.device,
|
| 350 |
+
img_dim=img_dim,
|
| 351 |
)
|
| 352 |
+
|
| 353 |
+
image_visualizations.append(vis_t)
|
| 354 |
+
image_features.append(img_feats)
|
| 355 |
+
image_similarities.append(similarity.item())
|
| 356 |
+
|
| 357 |
+
else: # st.session_state.active_model == Legacy
|
| 358 |
+
text_features = st.session_state.rn_model(st.session_state.search_field_value)
|
| 359 |
+
|
| 360 |
+
if st.session_state.device == "cpu":
|
| 361 |
+
text_features = text_features.float().to(st.session_state.device)
|
| 362 |
+
else:
|
| 363 |
+
text_features = text_features.to(st.session_state.device)
|
| 364 |
+
|
| 365 |
+
for altered_image in image_tiles:
|
| 366 |
+
p_image = (
|
| 367 |
+
st.session_state.rn_image_preprocess(altered_image)
|
| 368 |
+
.unsqueeze(0)
|
| 369 |
+
.to(st.session_state.device)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
)
|
| 371 |
|
| 372 |
+
vis_t = interpret_rn_overlapped(
|
| 373 |
+
p_image.type(image_model.dtype),
|
| 374 |
+
text_features.type(image_model.dtype),
|
| 375 |
+
image_model.visual,
|
| 376 |
+
GradCAM,
|
| 377 |
+
st.session_state.device,
|
| 378 |
+
img_dim=img_dim,
|
| 379 |
)
|
| 380 |
|
| 381 |
+
text_features_norm = text_features.norm(dim=-1, keepdim=True)
|
| 382 |
+
text_features_new = text_features / text_features_norm
|
| 383 |
|
| 384 |
+
image_feats = image_model.encode_image(p_image.type(image_model.dtype))
|
| 385 |
+
image_feats_norm = image_feats.norm(dim=-1, keepdim=True)
|
| 386 |
+
image_feats_new = image_feats / image_feats_norm
|
|
|
|
|
|
|
|
|
|
| 387 |
|
| 388 |
+
similarity = image_feats_new[0].dot(text_features_new[0])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
|
| 390 |
+
image_visualizations.append(vis_t)
|
| 391 |
+
image_features.append(p_image)
|
| 392 |
+
image_similarities.append(similarity.item())
|
| 393 |
|
| 394 |
+
transform = ToPILImage()
|
| 395 |
|
| 396 |
+
vis_images = [transform(vis_t) for vis_t in image_visualizations]
|
| 397 |
|
| 398 |
+
if st.session_state.vision_mode == "cropped":
|
| 399 |
+
resized_img.paste(vis_images[0], (left, top))
|
| 400 |
+
vis_images = [resized_img]
|
| 401 |
|
| 402 |
+
if orig_img_dims[0] > orig_img_dims[1]:
|
| 403 |
+
scale_factor = MAX_IMG_WIDTH / orig_img_dims[0]
|
| 404 |
+
scaled_dims = [MAX_IMG_WIDTH, int(orig_img_dims[1] * scale_factor)]
|
| 405 |
+
else:
|
| 406 |
+
scale_factor = MAX_IMG_HEIGHT / orig_img_dims[1]
|
| 407 |
+
scaled_dims = [int(orig_img_dims[0] * scale_factor), MAX_IMG_HEIGHT]
|
| 408 |
|
| 409 |
+
if tile_behavior == "width":
|
| 410 |
+
vis_image = Image.new("RGB", (len(vis_images) * img_dim, img_dim))
|
| 411 |
+
for x, v_img in enumerate(vis_images):
|
| 412 |
+
vis_image.paste(v_img, (x * img_dim, 0))
|
| 413 |
+
activations_image = vis_image.resize(scaled_dims)
|
| 414 |
|
| 415 |
+
elif tile_behavior == "height":
|
| 416 |
+
vis_image = Image.new("RGB", (img_dim, len(vis_images) * img_dim))
|
| 417 |
+
for y, v_img in enumerate(vis_images):
|
| 418 |
+
vis_image.paste(v_img, (0, y * img_dim))
|
| 419 |
+
activations_image = vis_image.resize(scaled_dims)
|
| 420 |
|
| 421 |
+
else:
|
| 422 |
+
activations_image = vis_images[0].resize(scaled_dims)
|
| 423 |
|
| 424 |
+
return activations_image, image_features, np.mean(image_similarities)
|
| 425 |
+
|
| 426 |
+
|
| 427 |
+
def visualize_gradcam(image):
|
| 428 |
+
if "search_field_value" not in st.session_state:
|
| 429 |
+
return
|
| 430 |
+
|
| 431 |
+
header_cols = st.columns([80, 20], vertical_alignment="bottom")
|
| 432 |
+
with header_cols[0]:
|
| 433 |
+
st.title("Image + query details")
|
| 434 |
+
with header_cols[1]:
|
| 435 |
+
if st.button("Close"):
|
| 436 |
+
st.rerun()
|
| 437 |
+
|
| 438 |
+
if st.session_state.active_model == "M-CLIP (multilingual ViT)":
|
| 439 |
+
img_dim = 240
|
| 440 |
+
image_model = st.session_state.ml_image_model
|
| 441 |
+
# Sometimes used for token importance viz
|
| 442 |
+
tokenized_text = st.session_state.ml_tokenizer.tokenize(
|
| 443 |
+
st.session_state.search_field_value
|
| 444 |
+
)
|
| 445 |
+
elif st.session_state.active_model == "Legacy (multilingual ResNet)":
|
| 446 |
+
img_dim = 288
|
| 447 |
+
image_model = st.session_state.rn_image_model
|
| 448 |
+
# Sometimes used for token importance viz
|
| 449 |
+
tokenized_text = st.session_state.rn_tokenizer.tokenize(
|
| 450 |
+
st.session_state.search_field_value
|
| 451 |
+
)
|
| 452 |
+
else: # J-CLIP
|
| 453 |
+
img_dim = 224
|
| 454 |
+
image_model = st.session_state.ja_image_model
|
| 455 |
+
# Sometimes used for token importance viz
|
| 456 |
+
tokenized_text = st.session_state.ja_tokenizer.tokenize(
|
| 457 |
+
st.session_state.search_field_value
|
| 458 |
)
|
| 459 |
|
| 460 |
+
with st.spinner("Calculating..."):
|
| 461 |
+
# info_text = st.text("Calculating activation regions...")
|
| 462 |
+
|
| 463 |
+
activations_image, image_features, similarity_score = get_overlay_vis(
|
| 464 |
+
image, img_dim, image_model
|
| 465 |
)
|
| 466 |
|
| 467 |
+
st.markdown(
|
| 468 |
+
f"**Query text:** {st.session_state.search_field_value} | **Approx. image relevance:** {round(similarity_score.item(), 3)}"
|
| 469 |
+
)
|
| 470 |
+
|
| 471 |
+
st.image(activations_image)
|
| 472 |
+
|
| 473 |
+
# image_io = BytesIO()
|
| 474 |
+
# activations_image.save(image_io, "PNG")
|
| 475 |
+
# dataurl = "data:image/png;base64," + b64encode(image_io.getvalue()).decode(
|
| 476 |
+
# "ascii"
|
| 477 |
+
# )
|
| 478 |
+
|
| 479 |
+
# st.html(
|
| 480 |
+
# f"""<div style="display: flex; flex-direction: column; align-items: center;">
|
| 481 |
+
# <img src="{dataurl}" />
|
| 482 |
+
# </div>"""
|
| 483 |
+
# )
|
| 484 |
+
|
| 485 |
+
tokenized_text = [
|
| 486 |
+
tok.replace("▁", "").replace("#", "") for tok in tokenized_text if tok != "▁"
|
| 487 |
+
]
|
| 488 |
tokenized_text = [
|
| 489 |
+
tok
|
| 490 |
+
for tok in tokenized_text
|
| 491 |
+
if tok
|
| 492 |
+
not in ["s", "ed", "a", "the", "an", "ing", "て", "に", "の", "は", "と", "た"]
|
| 493 |
]
|
| 494 |
|
| 495 |
if (
|
|
|
|
| 499 |
"Calculate text importance (may take some time)",
|
| 500 |
)
|
| 501 |
):
|
| 502 |
+
scores_per_token = {}
|
|
|
|
| 503 |
|
| 504 |
progress_text = f"Processing {len(tokenized_text)} text tokens"
|
| 505 |
progress_bar = st.progress(0.0, text=progress_text)
|
|
|
|
| 507 |
for t, tok in enumerate(tokenized_text):
|
| 508 |
token = tok
|
| 509 |
|
| 510 |
+
for img_feats in image_features:
|
| 511 |
+
if st.session_state.active_model == "Legacy (multilingual ResNet)":
|
| 512 |
+
word_rel = rn_perword_relevance(
|
| 513 |
+
img_feats,
|
| 514 |
+
st.session_state.search_field_value,
|
| 515 |
+
image_model,
|
| 516 |
+
tokenize,
|
| 517 |
+
GradCAM,
|
| 518 |
+
st.session_state.device,
|
| 519 |
+
token,
|
| 520 |
+
data_only=True,
|
| 521 |
+
img_dim=img_dim,
|
| 522 |
+
)
|
| 523 |
+
else:
|
| 524 |
+
word_rel = vit_perword_relevance(
|
| 525 |
+
img_feats,
|
| 526 |
+
st.session_state.search_field_value,
|
| 527 |
+
image_model,
|
| 528 |
+
tokenize,
|
| 529 |
+
st.session_state.device,
|
| 530 |
+
token,
|
| 531 |
+
img_dim=img_dim,
|
| 532 |
+
)
|
| 533 |
+
avg_score = np.mean(word_rel)
|
| 534 |
+
if avg_score == 0 or np.isnan(avg_score):
|
| 535 |
+
continue
|
| 536 |
+
|
| 537 |
+
if token not in scores_per_token:
|
| 538 |
+
scores_per_token[token] = [1 / avg_score]
|
| 539 |
+
else:
|
| 540 |
+
scores_per_token[token].append(1 / avg_score)
|
| 541 |
|
| 542 |
progress_bar.progress(
|
| 543 |
(t + 1) / len(tokenized_text),
|
|
|
|
| 545 |
)
|
| 546 |
progress_bar.empty()
|
| 547 |
|
| 548 |
+
avg_scores_per_token = [
|
| 549 |
+
np.mean(scores_per_token[tok]) for tok in list(scores_per_token.keys())
|
| 550 |
+
]
|
| 551 |
+
|
| 552 |
+
normed_scores = torch.softmax(torch.tensor(avg_scores_per_token), dim=0)
|
| 553 |
|
| 554 |
token_scores = [f"{round(score.item() * 100, 3)}%" for score in normed_scores]
|
| 555 |
st.session_state.text_table_df = pd.DataFrame(
|
| 556 |
+
{"token": list(scores_per_token.keys()), "importance": token_scores}
|
| 557 |
)
|
| 558 |
|
| 559 |
st.markdown("**Importance of each text token to relevance score**")
|
| 560 |
st.table(st.session_state.text_table_df)
|
| 561 |
|
| 562 |
|
| 563 |
+
@st.dialog(" ", width="large")
|
| 564 |
+
def image_modal(image):
|
| 565 |
+
visualize_gradcam(image)
|
| 566 |
|
| 567 |
|
| 568 |
+
def vis_known_image(vis_image_id):
|
| 569 |
+
image_url = st.session_state.images_info.loc[vis_image_id]["image_url"]
|
| 570 |
+
image_response = requests.get(image_url)
|
| 571 |
+
image = Image.open(BytesIO(image_response.content), formats=["JPEG", "GIF", "PNG"])
|
| 572 |
+
image = image.convert("RGB")
|
| 573 |
+
|
| 574 |
+
image_modal(image)
|
| 575 |
+
|
| 576 |
+
|
| 577 |
+
def vis_uploaded_image():
|
| 578 |
+
uploaded_file = st.session_state.uploaded_image
|
| 579 |
+
if uploaded_file is not None:
|
| 580 |
+
# To read file as bytes:
|
| 581 |
+
bytes_data = uploaded_file.getvalue()
|
| 582 |
+
image = Image.open(BytesIO(bytes_data), formats=["JPEG", "GIF", "PNG"])
|
| 583 |
+
image = image.convert("RGB")
|
| 584 |
+
|
| 585 |
+
image_modal(image)
|
| 586 |
+
|
| 587 |
+
|
| 588 |
+
def format_vision_mode(mode_stub):
|
| 589 |
+
return mode_stub.capitalize()
|
| 590 |
|
| 591 |
|
| 592 |
st.title("Explore Japanese visual aesthetics with CLIP models")
|
|
|
|
| 705 |
use_container_width=True,
|
| 706 |
)
|
| 707 |
|
| 708 |
+
controls = st.columns([25, 25, 20, 35], gap="large", vertical_alignment="center")
|
| 709 |
with controls[0]:
|
| 710 |
im_per_pg = st.columns([30, 70], vertical_alignment="center")
|
| 711 |
with im_per_pg[0]:
|
|
|
|
| 715 |
"Images/page:", range(10, 50, 10), label_visibility="collapsed"
|
| 716 |
)
|
| 717 |
with controls[1]:
|
|
|
|
|
|
|
| 718 |
im_per_row = st.columns([30, 70], vertical_alignment="center")
|
| 719 |
with im_per_row[0]:
|
| 720 |
st.markdown("**Images/row:**")
|
|
|
|
| 723 |
"Images/row:", range(1, 6), value=5, label_visibility="collapsed"
|
| 724 |
)
|
| 725 |
num_batches = ceil(len(st.session_state.image_ids) / batch_size)
|
| 726 |
+
with controls[2]:
|
|
|
|
|
|
|
| 727 |
pager = st.columns([40, 60], vertical_alignment="center")
|
| 728 |
with pager[0]:
|
| 729 |
st.markdown(f"Page **{st.session_state.current_page}** of **{num_batches}** ")
|
|
|
|
| 736 |
label_visibility="collapsed",
|
| 737 |
key="current_page",
|
| 738 |
)
|
| 739 |
+
with controls[3]:
|
| 740 |
+
st.file_uploader(
|
| 741 |
+
"Upload an image",
|
| 742 |
+
type=["jpg", "jpeg", "gif", "png"],
|
| 743 |
+
key="uploaded_image",
|
| 744 |
+
label_visibility="collapsed",
|
| 745 |
+
on_change=vis_uploaded_image,
|
| 746 |
+
)
|
| 747 |
|
| 748 |
|
| 749 |
if len(st.session_state.search_image_ids) == 0:
|
|
|
|
| 780 |
if not RUN_LITE or st.session_state.active_model == "M-CLIP (multilingual ViT)":
|
| 781 |
st.button(
|
| 782 |
"Explain this",
|
| 783 |
+
on_click=vis_known_image,
|
| 784 |
args=[image_id],
|
| 785 |
use_container_width=True,
|
| 786 |
key=image_id,
|
requirements.txt
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
clip @ git+https://github.com/openai/CLIP.git
|
| 2 |
ftfy==6.2.0
|
|
|
|
| 3 |
multilingual_clip==1.0.10
|
| 4 |
numpy==1.26
|
| 5 |
opencv-python==4.10.0.84
|
|
@@ -7,7 +8,6 @@ pandas==2.1.2
|
|
| 7 |
pillow==10.1.0
|
| 8 |
requests==2.31.0
|
| 9 |
sentencepiece==0.2.0
|
| 10 |
-
streamlit
|
| 11 |
torch==2.4.0
|
| 12 |
torchvision==0.19.0
|
| 13 |
transformers==4.35.0
|
|
|
|
| 1 |
clip @ git+https://github.com/openai/CLIP.git
|
| 2 |
ftfy==6.2.0
|
| 3 |
+
matplotlib==3.8.1
|
| 4 |
multilingual_clip==1.0.10
|
| 5 |
numpy==1.26
|
| 6 |
opencv-python==4.10.0.84
|
|
|
|
| 8 |
pillow==10.1.0
|
| 9 |
requests==2.31.0
|
| 10 |
sentencepiece==0.2.0
|
|
|
|
| 11 |
torch==2.4.0
|
| 12 |
torchvision==0.19.0
|
| 13 |
transformers==4.35.0
|